
Craig Walls
Ryan Breidenbach

M A N N I N G

SPRING
IN ACTION

Spring in Action
CRAIG WALLS

RYAN BREIDENBACH
M A N N I N G
Greenwich

(74° w. long.)

For online information and ordering of this and other Manning books, please go to
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact:

Special Sales Department
Manning Publications Co.
209 Bruce Park Avenue Fax: (203) 661-9018
Greenwich, CT 06830 email: orders@manning.com

©2005 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without
prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy
to have the books they publish printed on acid-free paper, and we exert our best efforts
to that end.

Manning Publications Co. Copyeditor: Liz Welch
209 Bruce Park Avenue Typesetter: Denis Dalinnik
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 1-932394-35-4
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – VHG – 09 08 07 06 05

 Maisy Grace, see you soon
 —C.W.

 For my brother, Lee
 —R.B.

P

P

P

ART 1 SPRING ESSENTIALS .. 1

1 ■ A Spring jump start 3

2 ■ Wiring beans 42

3 ■ Creating aspects 91

ART 2 SPRING IN THE BUSINESS LAYER 131

4 ■ Hitting the database 133

5 ■ Managing transactions 173

6 ■ Remoting 207

7 ■ Accessing enterprise services 240

ART 3 SPRING IN THE WEB LAYER 267

8 ■ Building the web layer 269

9 ■ View layer alternatives 319

brief contents
vii

10 ■ Working with other web frameworks 346

11 ■ Securing Spring applications 367

preface xvii
acknowledgments xx
about this book xxiii

PART 1 SPRING ESSENTIALS ... 1

1 A Spring jump start 3
1.1 Why Spring? 5

A day in the life of a J2EE developer 5 ■ Spring’s pledge 6

1.2 What is Spring? 8
Spring modules 9

1.3 Spring jump start 12

1.4 Understanding inversion of control 15
Injecting dependencies 16 ■ IoC in action 16
IoC in enterprise applications 23

1.5 Applying aspect-oriented programming 25
Introducing AOP 25 ■ AOP in action 27 ■ AOP in the

contents
ix

enterprise 30

x CONTENTS

1.6 Spring alternatives 33
Comparing Spring to EJB 33 ■ Considering other lightweight
containers 36 ■ Web frameworks 38 ■ Persistence
frameworks 40

1.7 Summary 40

2 Wiring beans 42
2.1 Containing your beans 44

Introducing the BeanFactory 44 ■ Working with an application
context 46 ■ A bean’s life 47

2.2 Basic wiring 50
Wiring with XML 54 ■ Adding a bean 55 ■ Injecting
dependencies via setter methods 58 ■ Injecting dependencies
via constructor 65

2.3 Autowiring 69
Handling ambiguities of autowiring 71 ■ Mixing auto and
explicit wiring 72 ■ Autowiring by default 72 ■ To autowire
or not to autowire 72

2.4 Working with Spring’s special beans 73
Postprocessing beans 74 ■ Postprocessing the bean factory 76
Externalizing the configuration 78 ■ Customizing property
editors 80 ■ Resolving text messages 83 ■ Listening for
events 85 ■ Publishing events 86 ■ Making beans aware 87

2.5 Summary 90

3 Creating aspects 91
3.1 Introducing AOP 92

Defining AOP terminology 93 ■ Spring’s AOP
implementation 95

3.2 Creating advice 97
Before advice 99 ■ After advice 101 ■ Around advice 102
Throws advice 104 ■ Introduction advice 105

3.3 Defining pointcuts 105
Defining a pointcut in Spring 105 ■ Understanding

■
advisors 107 Using Spring’s static pointcuts 107
Using dynamic pointcuts 111 ■ Pointcut operations 113

CONTENTS xi

3.4 Creating introductions 115
Implementing IntroductionInterceptor 115 ■ Creating an
IntroductionAdvisor 119 ■ Using introduction advice
carefully 120

3.5 Using ProxyFactoryBean 122

3.6 Autoproxying 124
BeanNameAutoProxyCreator 124 ■ DefaultAdvisorAutoProxy-
Creator 126 ■ Metadata autoproxying 128

3.7 Summary 128

PART 2 SPRING IN THE BUSINESS LAYER........................... 131

4 Hitting the database 133
4.1 Learning Spring’s DAO philosophy 134

Understanding Spring’s DataAccessException 135
Working with DataSources 137 ■ Consistent DAO
support 139

4.2 Using JDBC with Spring 141
The problem with JDBC code 142 ■ Using JdbcTemplate 144
Creating operations as objects 152 ■ Auto-incrementing
keys 155

4.3 Introducing Spring’s ORM framework support 156

4.4 Integrating Hibernate with Spring 157
Hibernate overview 157 ■ Managing Hibernate
resources 159 ■ Accessing Hibernate through
HibernateTemplate 162 ■ Subclassing
HibernateDaoSupport 163

4.5 Spring and JDO 164
Configuring JDO 164 ■ Accessing data with JdoTemplate 165

4.6 Spring and iBATIS 166
Setting up SQL Maps 167
Using SqlMapClientTemplate 168

4.7 Spring and OJB 169

Setting up OJB’s PersistenceBroker 169

4.8 Summary 171

xii CONTENTS

5 Managing transactions 173
5.1 Understanding transactions 174

Explaining transactions in only four
words 176 ■ Understanding Spring’s transaction management
support 177 ■ Introducing Spring’s transaction manager 178

5.2 Programming transactions in Spring 181

5.3 Declaring transactions 183
Understanding transaction attributes 185 ■ Declaring a simple
transaction policy 189

5.4 Declaring transactions by method name 191
Using NameMatchTransactionAttributeSource 191
Shortcutting name-matched transactions 194

5.5 Declaring transactions with metadata 195
Sourcing transaction attributes from metadata 196
Declaring transactions with Commons Attributes 197

5.6 Trimming down transaction declarations 201
Inheriting from a parent TransactionProxyFactoryBean 202
Autoproxying transactions 203

5.7 Summary 206

6 Remoting 207
6.1 Spring remoting overview 208

6.2 Working with RMI 212
Wiring RMI services 212 ■ Exporting RMI services 214

6.3 Remoting with Hessian and Burlap 218
Accessing Hessian/Burlap services 219 ■ Exposing bean
functionality with Hessian/Burlap 220

6.4 Using Http invoker 223
Accessing services via HTTP 224 ■ Exposing beans as HTTP
Services 225

6.5 Working with EJBs 226
Accessing EJBs 227 ■ Developing Spring-enabled EJBs 231

6.6 Using JAX-RPC web services 233

Referencing a web service with JAX-RPC 234 ■ Wiring a web
service in Spring 236

6.7 Summary 238

CONTENTS xiii

7 Accessing enterprise services 240
7.1 Retrieving objects from JNDI 241

Working with conventional JNDI 241 ■ Proxying JNDI
objects 243

7.2 Sending e-mail 244

7.3 Scheduling tasks 248
Scheduling with Java’s Timer 248 ■ Using the Quartz
scheduler 250 ■ Invoking methods on a schedule 254

7.4 Sending messages with JMS 256
Sending messages with JMS templates 257 ■ Consuming
messages 261 ■ Converting messages 263

7.5 Summary 266

PART 3 SPRING IN THE WEB LAYER.................................. 267

8 Building the web layer 269
8.1 Getting started with Spring MVC 270

A day in the life of a request 271 ■ Configuring
DispatcherServlet 272 ■ Spring MVC in a nutshell 275

8.2 Mapping requests to controllers 279
Mapping URLs to bean names 280 ■ Using
SimpleUrlHandlerMapping 281 ■ Using metadata to map
controllers 281 ■ Working with multiple handler
mappings 282

8.3 Handling requests with controllers 283
Writing a simple controller 285 ■ Processing commands 287
Processing form submissions 289 ■ Processing complex forms
with wizards 294 ■ Handling multiple actions in one
controller 301 ■ Working with Throwaway controllers 305

8.4 Resolving views 307
Using template views 308 ■ Resolving view beans 310
Choosing a view resolver 313

8.5 Using Spring’s bind tag 314
8.6 Handling exceptions 317

8.7 Summary 317

xiv CONTENTS

9 View layer alternatives 319
9.1 Using Velocity templates 321

Defining the Velocity view 321 ■ Configuring the Velocity
engine 322 ■ Resolving Velocity views 323 ■ Formatting
dates and numbers 324 ■ Exposing request and session
attributes 325 ■ Binding form fields in Velocity 326

9.2 Working with FreeMarker 327
Constructing a FreeMarker view 328 ■ Configuring the
FreeMarker engine 329 ■ Resolving FreeMarker views 330
Binding form fields in FreeMarker 330

9.3 Designing page layout with Tiles 332
Tile views 332 ■ Tile controllers 335

9.4 Generating non-HTML output 337
Producing Excel spreadsheets 338 ■ Generating PDF
documents 340 ■ Generating other non-HTML files 343

9.5 Summary 344

10 Working with other web frameworks 346
10.1 Working with Jakarta Struts 347

Registering the Spring plug-in 348 ■ Implementing
Spring-aware Struts actions 348 ■ Delegating actions 350

10.2 Working with Tapestry 352
Replacing the Tapestry Engine 353 ■ Loading Spring beans
into Tapestry pages 355

10.3 Integrating with JavaServer Faces 357
Resolving variables 357 ■ Publishing request handled
events 361

10.4 Integrating with WebWork 362
WebWork 1 363 ■ XWork/WebWork2 364

10.5 Summary 365

11 Securing Spring applications 367
11.1 Introducing the Acegi Security System 368

■
Security interceptors 369 Authentication managers 370
Access decisions managers 370 ■ Run-as managers 370

CONTENTS xv

11.2 Managing authentication 371
Configuring a provider manager 371 ■ Authenticating against
a database 373 ■ Authenticating against an LDAP
repository 382 ■ Enabling Single Sign-On with Acegi and
Yale CAS 384

11.3 Controlling access 389
Voting access decisions 389 ■ Deciding how to vote 390
Handling voter abstinence 392

11.4 Securing web applications 392
Proxying Acegi’s filters 394 ■ Enforcing web security 397
Processing a login 400 ■ Setting up the security context 406
Ensuring a secure channel 407 ■ Using the Acegi tag
library 411

11.5 Securing method invocations 412
Creating a security aspect 412 ■ Securing methods using
metadata 414

11.6 Summary 416

appendix A: Spring setup 417
A.1 Downloading Spring 418

A.2 Choosing a distribution 418

A.3 Setting up your project 419

A.4 Building with Ant 420

appendix B: Spring-related projects 422
B.1 AppFuse 423

B.2 Rich Client Project 424

B.3 Spring.NET 424

index 427

preface
Software developers need to have a number of traits in order to practice their
craft well. First, they must be good analytical thinkers and problem solvers. A
developer’s primary role is to create software that solves business problems.
This requires analyzing customer needs and coming up with successful, cre-
ative solutions.

 They also need to be curious. Developments in the software industry are
moving targets, always evolving. New frameworks, new techniques, new lan-
guages, and new methodologies are constantly emerging. Each one is a new
tool that needs to be mastered and added to the toolbox, allowing the devel-
oper to do his or her job better and faster.

 Then there is the most cherished trait of all, “laziness.” The kind of lazi-
ness that motivates developers to work hard to seek out solutions with the
least amount of effort. It was with curiosity, a good dose of “laziness,” and all
the analytical abilities we could muster that the two of us struck out together
four years ago to find new ways to develop software.

 This was the time when open source software was reaching critical mass in
the Java community. Tons of open source frameworks were blossoming on the
Java landscape. In order to decide to adopt one, it had to hit the sweet spot of
xvii

our needs—it had to do 80% of what we needed right out of the box. And for
any functionality that was not right out of the box, the framework needed to
be easily extendible so that functionality too would be included. Extending

xviii PREFACE

didn’t mean kludging in some hack that was so ugly you felt dirty afterwards—it
meant extending in an elegant fashion. That wasn’t too much to ask, right?

 The first of these frameworks that gained immediate adoption on our team
was Ant. From the get-go, we could tell that Ant had been created by another
developer who knew our pain in building Java applications. From that moment
on, no more javac. No more CLASSPATH. All this with a straightforward (albeit
sometimes verbose) XML configuration. Huzzah! Life (and builds) just got easier.

 As we went along, we began adopting more and more tools. Eclipse became our
IDE of choice. Log4J became our (and everybody else’s) default logging toolkit.
And Lucene supplanted our commercial search solution. Each of these tools met
our criteria of filling a need while being easy to use, understand, and extend.

 But something was lacking. These great tools were designed to help develop
software, like Ant and Eclipse, or to serve a very specific application need, like
searching in the case of Lucene and logging for Log4J. None of them addressed
the needs at the heart of enterprise applications: persistence, transactions, and
integration with other enterprise resources.

 That all changed in the last year or so when we discovered the remarkable
one-two enterprise punch of Spring and Hibernate. Between these two frame-
works nearly all of our middle- and data-tier needs were met.

 We first adopted Hibernate. It was the most intuitive and feature-rich object/
relational mapping tool out there. But it was by adopting Spring that we really
got our code to look good. With Spring’s inversion of control, we were able to get
rid of all our custom factories and configurers. In fact, that is the reason we first
integrated Spring into our applications. Its wiring allowed us to streamline our
application configurations and move away from homegrown solutions. (Hey,
every developer likes writing his own framework. But sometimes you just have to
let go!)

 We quickly discovered a nice bonus: Spring also provided very easy integra-
tion with Hibernate. This allowed us to ditch our custom Hibernate integration
classes and use Spring’s support instead. In turn, this led us directly to Spring’s
support for transparent persistence.

 Look closely and you will see a pattern here. The more we used Spring, the
more we discovered new features. And each feature we discovered was a pleasure
to work with. Its web MVC framework worked nicely in a few applications. Its AOP
support has been helpful in several places, primarily security. The JDBC support

was quite nice for some smaller programs. Oh yeah, we also use it for scheduling.
And JNDI access. And email integration. When it comes to hitting development
sweet spots, Spring knocks the ball out of the park.

PREFACE xix

 We liked Spring so much, we decided somebody should write a book about it.
Fortunately, one of us had already written a book for Manning and knew how to
go about doing this sort of thing. Soon that “somebody who should write a book”
became us. In taking on this project we are trying to spread the gospel of Spring.
The Spring framework has been nothing but a joy for us to work with—we pre-
dict it will be the same for you. And, we hope this book will be a pleasant vehicle
for you to get to that point.

acknowledgments
The creation of this book was not just a two-man job. In addition to the two
authors, a great number of people were involved in many ways to make this
book possible.

 First, we’d like to acknowledge the book’s behind-the-scenes crew at Man-
ning Publications: publisher Marjan Bace, his assistant Susan Capparelle, our
editor Jackie Carter, as well as Denis Dalinnik, Leslie Haimes, Mary Piergies,
Liz Welch, Susan Forsyth, and Helen Trimes. We can’t imagine working with a
better team of professionals. You are all very good at what you do and deserve
commendation for producing the best technical books in the world.

 We’d also like to thank each of the reviewers who contributed their time to
provide us with the feedback, criticism, and inspiration we needed to shape
the book: Doug Warren, Muhammad Ashikuzzaman, Ryan Cox, Mojahedul
Hasanat, Jack Herrington, Olivier Jolly, William Lopez, Lester Martin, Dmitri
Maximovich, Daniel Miller, Christian Parker, Matthew Payne, and Norman
Richards. Special thanks to Doug Warren for his technical proofread of the
manuscript shortly before it went to press.

 And finally, thanks to Rod Johnson and the rest of the Spring team for cre-
ating Spring in the first place. We can honestly say that Spring is a pleasure to
work with. You guys rock!
xx

ACKNOWLEDGMENTS xxi

CRAIG WALLS
I want to thank my beautiful and loving wife, Raymie. You’re the love of my
life, my best friend, and my sweetest dream. Thanks for supporting me and for
your patience, and for putting up with another book project—I promise that
it’s over now.

 To my coauthor, Ryan, for getting me started with Spring and for helping me
put together this book to tell everyone else about it.

 To my team at Michaels—Ryan, Marianna, Van, Tonji, Jeff, Jim, Don, Carol,
and Leida—thanks for continuing to demonstrate every day what a world-class
software development team is capable of. Now that this book is done, maybe I
won’t have to decline as many lunch invitations!

 To my friends and colleagues whom I’ve met and chatted with this year as I
toured the country with the No-Fluff/Just-Stuff software symposiums: Glenn
Vanderburg, Ted Neward, Bruce Tate, Venkat Subramaniam, Ramnivas Laddad,
Dave Thomas, Erik Hatcher, Howard Lewis Ship, Neal Ford, Rick Hightower,
Ben Galbraith, Stuart Halloway, and Matt Raible. And thanks to Jay Zimmerman
for always putting on a great show and inviting me to be a part of it in 2004.

 To my friends and neighbors from the ’hood: John, Jennifer, and Tobey for
providing Raymie and me with frequent pizza/movie/sit-on-the-driveway breaks.

 Thanks to Dick Wolf for creating “Law & Order,” the TV show that provided
much of the background noise while I was writing.

 And everyone else I thanked in XDoclet in Action.

RYAN BREIDENBACH
First, I want to thank my wife Angi. Your limitless patience and encouragement is
what kept me going in this endeavor. I promise you will see me smiling more and
breathing easier now that this is done.

 To my daughter Julia, for helping me keep the pressure of writing a book in
perspective. It was always a pleasure to take some time away from writing to visit
the web sites of Elmo’s World and Jo Jo’s Circus.

 To my parents, Mark and Lynda, and my brother Lee, for understanding why
I kept my head buried in my laptop when I came to visit. I will be a lot less
stressed during future visits.

 To my in-laws, Stephanie and George, for your pep talks and for occasionally
(okay, frequently) babysitting to give Angi and me some time to ourselves.
 To my fellow developers out there, Van, Marianna, Tonji, and Jerry, for let-
ting me bounce ideas off you. Sometimes my brain gets going too fast and a swift
kick is in order to get me back in line.

xxii ACKNOWLEDGMENTS

 To my friends and neighbors, Dave, Javier, Alex, Scott and James for helping
me keep my chin up and, every now and then, providing some much needed
… levity.

 To the folks at CVSDude. Cool CVS hosting name. Great CVS hosting service.
 Finally, to Craig for being a mentor and showing me the ropes of how to write

a book. There is a lot to know and your help made the process that much easier.

about this book
The Spring framework was created with a very specific goal in mind: to make
developing J2EE applications easier. Along the same lines, Spring in Action was
written to make learning how to use Spring easier. Our goal is not to give you
a blow-by-blow listing of Spring APIs. Instead, we hope to present the Spring
framework in a way that is most relevant to a J2EE developer by providing
practical code examples from real-world experience.

 Since Spring is a modular framework, this book was written in the same
way. We recognize that not all developers have the same needs. Some may
want to learn the Spring framework from the ground up, while others may
want to pick and choose different topics and go at their own pace. That way,
the book can act as a tool for learning Spring for the first time as well as a
guide and reference for those wanting to dig deeper into specific features.

Roadmap

Spring in Action is divided into three parts, plus two appendices. Each of the
three parts focuses on a general area of the Spring Framework: the core,
middle-tier, and web layer. While each part builds on the previous section,
each is also able to stand on its own, allowing you to dive right into a certain
xxiii

topic without starting from the beginning.
 In part 1, you’ll explore the two core features of the Spring framework:

inversion of control (IoC) and aspect-oriented programming (AOP). This will

xxiv ABOUT THIS BOOK

give you a good understanding of Spring’s fundamentals that will be utilized
throughout the book.

 In chapter 1, you’ll be introduced to IoC and AOP and how Spring uses them
to make developing Java applications easier. You will also see how Spring com-
pares to other frameworks, such as EJB, Struts, and PicoContainer.

 Chapter 2 takes a more detailed look at how to configure your application
objects using IoC. You will learn how to write loosely coupled components and
wire their dependencies and properties within the Spring container using XML.

 Chapter 3 explores how to use Spring’s AOP to decouple cross-cutting con-
cerns, such as security, from the objects that they service. This chapter also sets
the stage for chapter 5, where you’ll learn how to provide declarative transaction
services with Spring’s AOP.

 Part 2 builds on the IoC and AOP features introduced in part 1 and shows you
how to apply these concepts to the middle tier of your application.

 Chapter 4 covers Spring’s support for data persistence. You’ll be introduced
to Spring’s JDBC support, which helps you remove much of the boilerplate code
associated with JDBC. You’ll also see how Spring integrates with several popular
object-relational mapping frameworks, such as Hibernate, JDO, OJB, and iBATIS
SQL Maps.

 Chapter 5 complements chapter 4, showing you how to ensure integrity in
your database using Spring’s transaction support. You will see how Spring uses
AOP to give you the power of declarative transactions without having to use EJBs.

 Chapter 6 explores how to expose your application objects as remote services.
You’ll also learn how to transparently access remote services as though they were
any other in your application. Remoting technologies explored will include RMI,
Hessian/Burlap, EJB, web services, and Spring’s own HttpInvoker.

 Since most enterprise applications do not exist in a vacuum, chapter 7 shows
you how to integrate with other enterprise services. In this chapter, you will learn
how Spring makes it easy to integrate with mail services, JMS, and even EJBs.

 Part 3 moves out of the middle tier and into the presentation layer used in so
many J2EE applications: the Web.

 Chapter 8 introduces you to Spring’s own MVC web framework. You will dis-
cover how Spring can transparently bind web parameters to your business
objects and provide validation and error handling at the same time. You will
also see how easy it is to add functionality to your web applications using

Spring’s interceptors.

 Building on the foundation of Spring MVC, chapter 9 demonstrates how to
move beyond JavaServer Pages and use other templating languages such as

ABOUT THIS BOOK xxv

Velocity and FreeMarker. In addition, you’ll see how to use Spring MVC to
dynamically produce binary content, such as PDF and Excel documents.

 Chapter 10 shows you how to integrate Spring with other web frameworks.
For those of you who have already made an investment in another framework,
Spring provides support for several of the popular web frameworks, including
Struts, Tapestry, JavaServer Faces, and WebWork.

 Finally, in chapter 11 you will learn how to apply security to your web applica-
tions using the Acegi Security System to provide authentication. In addition, you
will see how to integrate Acegi with your business objects to apply security at the
method level as well.

 Appendix A will get you started with your own Spring application, showing
you how to download the Spring framework and configure your Ant build file.

 Appendix B introduces you to several other open source frameworks related
to Spring.

Who should read this book

Spring in Action is for all Java developers, but enterprise Java developers will find
it particularly useful. While we will guide you gently through code examples that
build in complexity throughout each chapter, the true power of Spring lies in its
ability to make enterprise applications easier to develop. As a result, enterprise
developers will most fully appreciate the examples presented in this book.

 Because a vast portion of Spring is devoted to providing enterprise services,
many parallels can be drawn between Spring and EJB. Any EJB experience you
have will be useful in making comparisons between these two frameworks. Finally,
while this book is not exclusively focused on web applications, a good portion of
it is dedicated to this topic. In fact, the final four chapters demonstrate how Spring
can support the development of your applications’ web layer. If you are a web
application developer, you will find the last part of this book especially valuable.

Code conventions and downloads

There are many code examples in this book. These examples will always appear
in a code font. If there is a particular part of an example we want you to pay
extra attention to, it will appear in a bolded code font. Any class name, method
name, or XML fragment within the normal text of the book will appear in code

font as well.

 Many of Spring’s classes have exceptionally long names. Because of this, line-
continuation markers () may be included when necessary.➥

xxvi ABOUT THIS BOOK

 Not all code examples in this book will be complete. Often we only show a
method or two from a class to focus on a particular topic.

 Complete source code for the application found in the book can be down-
loaded from the publisher’s web site at http://www.manning,.com/walls2 or at
http://www.springinaction.com.

Author Online

Purchase of Spring in Action includes free access to a private web forum run by
Manning Publications where you can make comments about the book, ask tech-
nical questions, and receive help from the authors and from other users. To
access the forum and subscribe to it, point your web browser to www.man-
ning.com/walls2. This page provides information on how to get on the forum
once you are registered, what kind of help is available, and the rules of conduct
on the forum.

 Manning’s commitment to our readers is to provide a venue where a mean-
ingful dialog between individual readers and between readers and the authors
can take place. It is not a commitment to any specific amount of participation on
the part of the authors, whose contribution to the AO remains voluntary (and
unpaid). We suggest you try asking the authors some challenging questions lest
their interest stray!

 The Author Online forum and the archives of previous discussions will be
accessible from the publisher’s web site as long as the book is in print.

About the authors

Craig Walls is a professional software developer with more than ten years’ expe-
rience developing software solutions in the areas of telecommunications,
finance, retail, and e-commerce. He is a frequent presenter at user groups and
conferences and a co-author of XDoclet in Action. Craig lives in Denton, Texas.

 An avid supporter of open source Java technologies, Ryan Breidenbach has
been developing Java web applications for the past five years. Ryan lives in Cop-
pell, Texas.

About the title
By combining introductions, overviews, and how-to examples, the In Action
books are designed to help learning and remembering. According to research in

ABOUT THIS BOOK xxvii

cognitive science, the things people remember are things they discover during
self-motivated exploration.

 Although no one at Manning is a cognitive scientist, we are convinced that for
learning to become permanent it must pass through stages of exploration, play,
and, interestingly, re-telling of what is being learned. People understand and
remember new things, which is to say they master them, only after actively
exploring them. Humans learn in action. An essential part of an In Action guide is
that it is example-driven. It encourages the reader to try things out, to play with
new code, and explore new ideas.

 There is another, more mundane, reason for the title of this book: our readers
are busy. They use books to do a job or solve a problem. They need books that
allow them to jump in and jump out easily and learn just what they want just
when they want it. They need books that aid them in action. The books in this
series are designed for such readers.

About the cover illustration

The figure on the cover of Spring in Action is an “Officer of the Grand
Signior.” The illustration is taken from a collection of costumes of the Otto-
man Empire published on January 1, 1802, by William Miller of Old Bond
Street, London. The title page is missing from the collection and we have been
unable to track it down to date. The book’s table of contents identifies the fig-
ures in both English and French, and each illustration bears the names of two
artists who worked on it, both of whom would no doubt be surprised to find
their art gracing the front cover of a computer programming book...two hun-
dred years later.

 The collection was purchased by a Manning editor at an antiquarian flea mar-
ket in the “Garage” on West 26th Street in Manhattan. The seller was an Ameri-
can based in Ankara, Turkey, and the transaction took place just as he was
packing up his stand for the day. The Manning editor did not have on his person
the substantial amount of cash that was required for the purchase and a credit
card and check were both politely turned down.

 With the seller flying back to Ankara that evening the situation was getting
hopeless. What was the solution? It turned out to be nothing more than an old-
fashioned verbal agreement sealed with a handshake. The seller simply pro-

posed that the money be transferred to him by wire and the editor walked out
with the bank information on a piece of paper and the portfolio of images under
his arm. Needless to say, we transferred the funds the next day, and we remain

xxviii ABOUT THIS BOOK

grateful and impressed by this unknown person’s trust in one of us. It recalls
something that might have happened a long time ago.

 The pictures from the Ottoman collection, like the other illustrations that
appear on our covers, bring to life the richness and variety of dress customs of
two centuries ago. They recall the sense of isolation and distance of that
period—and of every other historic period except our own hyperkinetic present.

 Dress codes have changed since then and the diversity by region, so rich at
the time, has faded away. It is now often hard to tell the inhabitant of one conti-
nent from another. Perhaps, trying to view it optimistically, we have traded a cul-
tural and visual diversity for a more varied personal life. Or a more varied and
interesting intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of
the computer business with book covers based on the rich diversity of regional
life of two centuries ago‚ brought back to life by the pictures from this collection.

Part 1

Spring essentials

II n part 1, you’ll explore the two core features of the Spring framework:
inversion of control (IoC) and aspect-oriented programming (AOP). Starting
with chapter 1, “A Spring jump start,” you’ll be given a quick overview of IoC
and AOP in Spring and how it can make developing Java applications easier.
You will also see how Spring compares to other frameworks such as EJB,
Struts, and PicoContainer.

 In chapter 2, “Wiring beans,” you’ll take a more in-depth look at how to
keep all of your application objects loosely coupled using IoC. You’ll learn
how to define your application’s objects and wire their dependencies within
the Spring container using XML.

 Chapter 3, “Creating aspects in Spring,” explores how to use Spring’s AOP
to decouple systemwide services (such as security and auditing) from the
objects they service. This chapter sets the stage for chapter 5, where you’ll
learn how to use Spring’s AOP to provide declarative transaction services.

A Spring jump start
This chapter covers
■ Creating simpler J2EE applications using Spring
■ Decoupling components with inversion of control
■ Managing cross-cutting concerns with aspect-

oriented programming
■ Comparing the features of Spring and EJB
3

4 CHAPTER 1
A Spring jump start

It all started with a bean.
 In 1996 the Java programming language was still a young, exciting, up-and-

coming platform. Many developers flocked to the language because they had
seen how to create rich and dynamic web applications using applets. But they
soon learned that there was more to this strange new language than animated
juggling cartoon characters. Unlike any language before it, Java made it possible
to write complex applications made up of discrete parts. They came for the
applets, but they stayed for the components.

 It was in December of that year that Sun Microsystems published the Java-
Beans 1.00-A specification. JavaBeans defined a software component model for
Java. This specification defined a set of coding policies that enabled simple Java
objects to be reusable and easily composed into more complex applications.
Although JavaBeans were intended as a general-purpose means of defining reus-
able application components, they have been primarily used as a model for build-
ing user interface widgets. They seemed too simple to be capable of any “real”
work. Enterprise developers wanted more.

 Sophisticated applications often require services such as transaction support,
security, and distributed computing—services not directly provided by the Java-
Beans specification. Therefore, in March 1998, Sun published the 1.0 version of
the Enterprise JavaBeans (EJB) specification. This specification extended the
notion of Java components to the server side, providing the much-needed enter-
prise services, but failed to continue the simplicity of the original JavaBeans spec-
ification. In fact, except in name, EJB bears very little resemblance to the original
JavaBeans specification.

 Despite the fact that many successful applications have been built based on
EJB, EJB never really achieved its intended purpose: to simplify enterprise appli-
cation development. Every version of the EJB specification contains the following
statement: “Enterprise JavaBeans will make it easy to write applications.” It is
true that EJB’s declarative programming model simplifies many infrastructural
aspects of development, such as transactions and security. But EJBs are compli-
cated in a different way by mandating deployment descriptors and plumbing
code (home and remote/local interfaces). Over time many developers became dis-
enchanted with EJB. As a result, its popularity has started to wane in recent years,
leaving many developers looking for an easier way.

 Now Java component development is coming full circle. New programming

techniques, including aspect-oriented programming (AOP) and inversion of con-
trol (IoC), are giving JavaBeans much of the power of EJB. These techniques fur-
nish JavaBeans with a declarative programming model reminiscent of EJB, but

Why Spring? 5

without all of EJB’s complexity. No longer must you resort to writing an unwieldy
EJB component when a simple JavaBean will suffice.

 And that’s where Spring steps into the picture.

1.1 Why Spring?

If you are reading this book, you probably want to know why Spring would be
good for you. After all, the Java landscape is full of frameworks. What makes
Spring any different? To put it simply, Spring makes developing enterprise appli-
cations easier. We don’t expect that to convince you at face value, so first let’s take
a look at life without Spring.

1.1.1 A day in the life of a J2EE developer

Alex is a Java developer who has just started on his first enterprise application. Like
many Java 2 Enterprise Edition (J2EE) applications, it is a web application that
serves many users and accesses an enterprise database. In this case, it is a customer
management application that will be used by other employees at his company.

 Eager to get to work, Alex fires up his favorite integrated development envi-
ronment (IDE) and starts to crank out his first component, the CustomerManager
component. In the EJB world, to develop this component Alex actually has to
write several classes—the home interface, the local interface, and the bean itself.
In addition, he has to create a deployment descriptor for this bean.

 Seeing that creating each of these files for every bean seems like a lot of effort,
Alex incorporates XDoclet into his project. XDoclet is a code generation tool that
can generate all of the necessary EJB files from a single source file. Although this
adds another step to Alex’s development cycle, his coding life is now much simpler.

 With XDoclet now handling a lot of the grunt work for him, Alex turns his
attention to his real problem—what exactly should the CustomerManager compo-
nent do? He jumps in with its first method, getPreferredCustomer(). There are
several business rules that define exactly what a preferred customer is, and Alex
dutifully codes them into his CustomerManager bean.

 Wanting to confirm that his logic is correct, Alex now wants to write some
tests to validate his code. But then it occurs to him: the code he is testing will
be running within the EJB container. Therefore, his tests need to execute
within the container as well. To easily accomplish this, he concocts a servlet

that will be responsible for executing these tests. Since all J2EE containers sup-
port servlets, this will allow him to execute his tests in the same container as his
EJB. Problem solved!

6 CHAPTER 1
A Spring jump start

 So Alex fires up his J2EE container and runs his tests. His tests fail. Alex sees his
coding error, fixes it, and runs the tests again. His tests fail again. He sees
another error and fixes it. He fires up the container and runs the tests again. As
Alex is going through this cycle, he notices something. The fact that he has to
start the J2EE container for each batch of testing really slows down his develop-
ment cycle. The development cycle should go code, test, code, test. This pattern
has now been replaced with code, wait, test, code, wait, test, code, wait, get
increasingly frustrated…

 While waiting for the container to start during another test run, Alex thinks,
“Why am I using EJB in the first place?” The answer, of course, is because of the
services it provides. But Alex isn’t using entity beans, so he is not using persis-
tence services. Alex is also not using the remoting or security services. In fact, the
only EJB service Alex is going to use is transaction management. This leads Alex
to another question: “Is there an easier way?”

1.1.2 Spring’s pledge

The above story was a dramatization based on the current state of J2EE—specifi-
cally EJB. In its current state, EJB is complicated. It isn’t complicated just to be
complicated. It is complicated because EJBs were created to solve complicated
things, such as distributed objects and remote transactions.

 Unfortunately, a good number of enterprise projects do not have this level of
complexity but still take on EJB’s burden of multiple Java files and deployment
descriptors and heavyweight containers. With EJB, application complexity is
high, regardless of the complexity of the problem being solved—even simple
applications are unduly complex. With Spring, the complexity of your applica-
tion is proportional to the complexity of the problem being solved.

 However, Spring recognizes that EJB does offer developers valuable services. So
Spring strives to deliver these same services while simplifying the programming
model. In doing so, it adopts a simple philosophy: J2EE should be easy to use. In
keeping with this philosophy, Spring was designed with the following beliefs:

■ Good design is more important than the underlying technology.
■ JavaBeans loosely coupled through interfaces is a good model.
■ Code should be easy to test.

Okay. So how does Spring help you apply this philosophy to your applications?

Why Spring? 7

Good design is more important than the underlying technology
As a developer, you should always be seeking the best design for your application,
regardless of the implementation you choose. Sometimes the complexity of EJB is
warranted because of the requirements of the application. Often, this is not the
case. Many applications require few, if any, of the services provided by EJB yet are
still implemented using this technology for technology’s sake. If an application
does not require distribution or declarative transaction support, it is unlikely that
EJB is the best technology candidate. Yet many Java developers feel compelled to
use EJB for every Java enterprise application.

 The idea behind Spring is that you can keep your code as simple as it needs to
be. If what you want are some plain-vanilla Java objects to perform some services
supported by transparent transactions, you’ve got it. And you don’t need an EJB
container, and you don’t have to implement special interfaces. You just have to
write your code.

JavaBeans loosely coupled through interfaces is a good model
If you are relying on EJBs to provide your application services, your components
do not just depend on the EJB business interface. They are also responsible for
retrieving these EJB objects from a directory, which entails a Java Naming and
Directory Interface (JNDI) lookup and communicating with the bean’s EJBHome
interface. This is not creating a decoupled application. This is tightly coupling
your application to a specific implementation, namely EJB.

 With Spring, your beans depend on collaborators through interfaces. Since
there are no implementation-specific dependencies, Spring applications are very
decoupled, testable, and easier to maintain. And because the Spring container is
responsible for resolving the dependencies, the active service lookup that is
involved in EJB is now out of the picture and the cost of programming to inter-
faces is minimized. All you need to do is create classes that communicate with
each other through interfaces, and Spring takes care of the rest.

Code should be easy to test
Testing J2EE applications can be difficult. If you are testing EJBs within a con-
tainer, you have to start up a container to execute even the most trivial of test
cases. Since starting and stopping a container is expensive, developers may be
tempted to skip testing all of their components. Avoiding tests because of the rig-
idness of a framework is not a good excuse.
 Because you develop Spring applications with JavaBeans, testing is cheap.
There is no J2EE container to be started since you will be testing a POJO. And

8 CHAPTER 1
A Spring jump start

since Spring makes coding to interfaces easy, your objects will be loosely coupled,
making testing even easier. A thorough battery of tests should be present in all of
your applications; Spring will help you accomplish this.

1.2 What is Spring?

Spring is an open-source framework, created by Rod Johnson and described in
his book Expert One-on-One: J2EE Design and Development.1 It was created to
address the complexity of enterprise application development. Spring makes it
possible to use plain-vanilla JavaBeans to achieve things that were previously only
possible with EJBs. However, Spring’s usefulness isn’t limited to server-side devel-
opment. Any Java application can benefit from Spring in terms of simplicity, test-
ability, and loose coupling.

NOTE To avoid ambiguity, we’ll use the term “EJB” when referring to Enter-
prise JavaBeans. When referring to the original JavaBean, we’ll call it
“JavaBean,” or “bean” for short. Some other terms we may throw around
are “POJO” (which stands for “plain old Java object”) or “POJI” (which
means “plain old Java interface”).

Put simply, Spring is a lightweight inversion of control and aspect-oriented con-
tainer framework. Okay, that’s not so simple a description. But it does summarize
what Spring does. To make more sense of Spring, let’s break this description down:

■ Lightweight—Spring is lightweight in terms of both size and overhead.
The entire Spring framework can be distributed in a single JAR file that
weighs in at just over 1 MB. And the processing overhead required by
Spring is negligible. What’s more, Spring is nonintrusive: objects in a
Spring-enabled application typically have no dependencies on Spring-
specific classes.

■ Inversion of control—Spring promotes loose coupling through a technique
known as inversion of control (IoC). When IoC is applied, objects are pas-
sively given their dependencies instead of creating or looking for depen-
dent objects for themselves. You can think of IoC as JNDI in reverse—
instead of an object looking up dependencies from a container, the con-
tainer gives the dependencies to the object at instantiation without waiting
to be asked.
1 In this book, Spring was originally called “interface21.”

What is Spring? 9

■ Aspect-oriented—Spring comes with rich support for aspect-oriented pro-
gramming that enables cohesive development by separating application
business logic from system services (such as auditing and transaction man-
agement). Application objects do what they’re supposed to do—perform
business logic—and nothing more. They are not responsible for (or even
aware of) other system concerns, such as logging or transactional support.

■ Container—Spring is a container in the sense that it contains and manages
the life cycle and configuration of application objects. You can configure
how your each of your beans should be created—either create one single
instance of your bean or produce a new instance every time one is needed
based on a configurable prototype—and how they should be associated
with each other. Spring should not, however, be confused with tradition-
ally heavyweight EJB containers, which are often large and cumbersome
to work with.

■ Framework—Spring makes it possible to configure and compose complex
applications from simpler components. In Spring, application objects are
composed declaratively, typically in an XML file. Spring also provides
much infrastructure functionality (transaction management, persistence
framework integration, etc.), leaving the development of application logic
to you.

All of these attributes of Spring enable you to write code that is cleaner, more
manageable, and easier to test. They also set the stage for a variety of subframe-
works within the greater Spring framework.

1.2.1 Spring modules

The Spring framework is made up of seven well-defined modules (figure 1.1).
When taken as a whole, these modules give you everything you need to develop
enterprise-ready applications. But you do not have to base your application fully
on the Spring framework. You are free to pick and choose the modules that suit
your application and ignore the rest.

 As you can see, all of Spring’s modules are built on top of the core container.
The container defines how beans are created, configured, and managed—more
of the nuts-and-bolts of Spring. You will implicitly use these classes when you con-
figure your application. But as a developer, you will most likely be interested in
the other modules that leverage the services provided by the container. These

modules will provide the frameworks with which you will build your application’s
services, such as AOP and persistence.

10 CHAPTER 1
A Spring jump start

The core container
Spring’s core container provides the fundamental functionality of the Spring
framework. In this module you’ll find Spring’s BeanFactory, the heart of any
Spring-based application. A BeanFactory is an implementation of the factory pat-
tern that applies IoC to separate your application’s configuration and depen-
dency specifications from the actual application code.

 We’ll be discussing the core module (the center of any Spring application)
throughout this book, starting in chapter 2, when we cover bean wiring using IoC.

Application context module
The core module’s BeanFactory makes Spring a container, but the context mod-
ule is what makes it a framework. This module extends the concept of Bean-
Factory, adding support for internationalization (I18N) messages, application life
cycle events, and validation.

 In addition, this module supplies many enterprise services such as e-mail,
JNDI access, EJB integration, remoting, and scheduling. Also included is support
for integration with templating frameworks such as Velocity and FreeMarker.

Spring’s AOP module
Spring provides rich support for aspect-oriented programming in its AOP mod-
ule. This module serves as the basis for developing your own aspects for your

Figure 1.1 The Spring framework is composed of several well-defined modules.
Spring-enabled application.
 To ensure interoperability between Spring and other AOP frameworks, much

of Spring’s AOP support is based on the API defined by the AOP Alliance. The

What is Spring? 11

AOP Alliance is an open-source project whose goal is to promote adoption of AOP
and interoperability among different AOP implementations by defining a com-
mon set of interfaces and components. You can find out more about the AOP Alli-
ance by visiting their website at http://aopalliance.sourceforge.net.

 The Spring AOP module also introduces metadata programming to Spring.
Using Spring’s metadata support, you are able to add annotations to your source
code that instruct Spring on where and how to apply aspects.

JDBC abstraction and the DAO module
Working with JDBC often results in a lot of boilerplate code that gets a connec-
tion, creates a statement, processes a result set, and then closes the connection.
Spring’s JDBC and Data Access Objects (DAO) module abstracts away the boiler-
plate code so that you can keep your database code clean and simple, and pre-
vents problems that result from a failure to close database resources. This module
also builds a layer of meaningful exceptions on top of the error messages given by
several database servers. No more trying to decipher cryptic and proprietary SQL
error messages!

 In addition, this module uses Spring’s AOP module to provide transaction
management services for objects in a Spring application.

Object/relational mapping integration module
For those who prefer using an object/relational mapping (ORM) tool over straight
JDBC, Spring provides the ORM module. Spring doesn’t attempt to implement its
own ORM solution, but does provide hooks into several popular ORM frame-
works, including Hibernate, JDO, and iBATIS SQL Maps. Spring’s transaction
management supports each of these ORM frameworks as well as JDBC.

Spring’s web module
The web context module builds on the application context module, providing a
context that is appropriate for web-based applications. In addition, this module
contains support for several web-oriented tasks such as transparently handling
multipart requests for file uploads and programmatic binding of request parame-
ters to your business objects. It also cotains integration support with Jakarta Struts.

The Spring MVC framework
Spring comes with a full-featured Model/View/Controller (MVC) framework for
building web applications. Although Spring can easily be integrated with other

MVC frameworks, such as Struts, Spring’s MVC framework uses IoC to provide for
a clean separation of controller logic from business objects. It also allows you to

12 CHAPTER 1
A Spring jump start

declaratively bind request parameters to your business objects, What’s more,
Spring’s MVC framework can take advantage of any of Spring’s other services,
such as I18N messaging and validation.

 Now that you know what Spring is all about, let’s jump right into writing
Spring applications, starting with the simplest possible example that we could
come up with.

1.3 Spring jump start

In the grand tradition of programming books, we’ll start by showing you how
Spring works with the proverbial “Hello World” example. Unlike the original
Hello World program, however, our example will be modified a bit to demon-
strate the basics of Spring.

NOTE To find out how to download Spring and plug it into your project’s build
routine, refer to appendix A.

Spring-enabled applications are like any Java application. They are made up of
several classes, each performing a specific purpose within the application. What
makes Spring-enabled applications different, however, is how these classes are
configured and introduced to each other. Typically, a Spring application has an
XML file that describes how to configure the classes, known as the Spring config-
uration file.

 The first class that our Springified Hello World example needs is a service
class whose purpose is to print the infamous greeting. Listing 1.1 shows Greeting-
Service.java, an interface that defines the contract for our service class.

package com.springinaction.chapter01.hello;

public interface GreetingService {
 public void sayGreeting();
}

GreetingServiceImpl.java (listing 1.2) implements the GreetingService interface.
Although it’s not necessary to hide the implementation behind an interface, it’s

Listing 1.1 The GreetingService interface separates the service’s
implementation from its interface.
highly recommended as a way to separate the implementation from its contract.

Spring jump start 13

package com.springinaction.chapter01.hello;

public class GreetingServiceImpl implements GreetingService {
 private String greeting;

 public GreetingServiceImpl() {}

 public GreetingServiceImpl(String greeting) {
 this.greeting = greeting;
 }

 public void sayGreeting() {
 System.out.println(greeting);
 }

 public void setGreeting(String greeting) {
 this.greeting = greeting;
 }
}

The GreetingServiceImpl class has a single property: the greeting property. This
property is simply a String that holds the text that is the message that will be
printed when the sayGreeting() method is called. You may have noticed that the
greeting can be set in two different ways: by the constructor or by the property’s
setter method.

 What’s not apparent just yet is who will make the call to either the constructor
or the setGreeting() method to set the property. As it turns out, we’re going to let
the Spring container set the greeting property. The Spring configuration file
(hello.xml) in listing 1.3 tells the container how to configure the greeting service.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN"
 "http://www.springframework.org/dtd/spring-beans.dtd">

<beans>
 <bean id="greetingService"
 class="com.springinaction.chapter01.hello.GreetingServiceImpl">
 <property name="greeting">
 <value>Buenos Dias!</value>
 </property>

Listing 1.2 GreetingServiceImpl.java: Responsible for printing the greeting

Listing 1.3 Configuring Hello World in Spring
 </bean>
</beans>

14 CHAPTER 1
A Spring jump start

The XML file in listing 1.3 declares an instance of a GreetingServiceImpl in the
Spring container and configures its greeting property with a value of “Buenos
Dias!” Let’s dig into the details of this XML file a bit to understand how it works.

 At the root of this simple XML file is the <beans> element, which is the root ele-
ment of any Spring configuration file. The <bean> element is used to tell the
Spring container about a class and how it should be configured. Here, the id
attribute is used to name the bean greetingService and the class attribute spec-
ifies the bean’s fully qualified class name.

 Within the <bean> element, the <property> element is used to set a property, in
this case the greeting property. By using <property>, we’re telling the Spring
container to call setGreeting() when setting the property.

 The value of the greeting is defined within the <value> element. Here we’ve
given the example a Spanish flair by choosing “Buenos Dias” instead of the tra-
ditional “Hello World.”

 The following snippet of code illustrates roughly what the container does when
instantiating the greeting service based on the XML definition in listing 1.3:2

GreetingServiceImpl greetingService = new GreetingServiceImpl();
greetingService.setGreeting("Buenos Dias!");

Similarly, we may choose to have Spring set the greeting property through
GreetingServiceImpl’s single argument constructor. For example:

<bean id="greetingService"
 class="com.springinaction.chapter01.hello.GreetingServiceImpl">
 <constructor-arg>
 <value>Buenos Dias!</value>
 </constructor-arg>
</bean>

The following code illustrates how the container will instantiate the greeting ser-
vice when using the <constructor-arg> element:

GreetingServiceImpl greetingService =
 new GreetingServiceImpl(“Buenos Dias”);

The last piece of the puzzle is the class that loads the Spring container and uses it
to retrieve the greeting service. Listing 1.4 shows this class.

2 The container actually performs other activities involving the life cycle of the bean. But for illustrative
purposes, these two lines are sufficient.

Understanding inversion of control 15

package com.springinaction.chapter01.hello;

import java.io.FileInputStream;
import org.springframework.beans.factory.BeanFactory;
import org.springframework.beans.factory.xml.XmlBeanFactory;

public class HelloApp {
 public static void main(String[] args) throws Exception {
 BeanFactory factory =
 new XmlBeanFactory(new FileInputStream("hello.xml"));

 GreetingService greetingService =
 (GreetingService) factory.getBean("greetingService");

 greetingService.sayGreeting();
 }
}

The BeanFactory class used here is the Spring container. After loading the
hello.xml file into the container, the main() method calls the getBean() method
on the BeanFactory to retrieve a reference to the greeting service. With this refer-
ence in hand, it finally calls the sayGreeting() method. When we run the Hello
application, it prints (not surprisingly)

Buenos Dias!

This is about as simple a Spring-enabled application as we can come up with. But
it does illustrate the basics of configuring and using a class in Spring. Unfortu-
nately, it is perhaps too simple because it only illustrates how to configure a bean
by injecting a String value into a property. The real power of Spring lies in how
beans can be injected into other beans using IoC.

1.4 Understanding inversion of control

Inversion of control is at the heart of the Spring framework. It may sound a bit
intimidating, conjuring up notions of a complex programming technique or
design pattern. But as it turns out, IoC is not nearly as complex as it sounds. In
fact, by applying IoC in your projects, you’ll find that your code will become sig-
nificantly simpler, easier to understand, and easier to test.

Listing 1.4 The Hello World main class
 But what does “inversion of control” mean?

16 CHAPTER 1
A Spring jump start

1.4.1 Injecting dependencies

In an article written in early 2004, Martin Fowler asked what aspect of control is
being inverted. He concluded that it is the acquisition of dependent objects that
is being inverted. Based on that revelation, he coined a better name for inversion
of control: dependency injection.3

 Any nontrivial application (pretty much anything more complex than Hello-
World.java) is made up of two or more classes that collaborate with each other to
perform some business logic. Traditionally, each object is responsible for obtain-
ing its own references to the objects it collaborates with (its dependencies). As
you’ll see, this can lead to highly coupled and hard-to-test code.

 Applying IoC, objects are given their dependencies at creation time by some
external entity that coordinates each object in the system. That is, dependencies
are injected into objects. So, IoC means an inversion of responsibility with regard
to how an object obtains references to collaborating objects.

1.4.2 IoC in action

If you’re like us, then you’re probably anxious to see how this works in code. We
aim to please, so without further delay…

 Suppose that your company’s crack marketing team culled together the results
of their expert market analysis and research and determined that what your cus-
tomers need is a knight. That is, they need a Java class that represents a knight.
After probing them for requirements, you learn that what they specifically want is
for you to implement a class that represents an Arthurian knight of the Round
Table that embarks on brave and noble quests to find the Holy Grail.

 This is an odd request, but you’ve become accustomed to the strange notions
and whims of the marketing team. So, without hesitation, you fire up your favor-
ite IDE and bang out the class in listing 1.5.

package com.springinaction.chapter01.knight;

public class KnightOfTheRoundTable {
 private String name;
 private HolyGrailQuest quest;

Listing 1.5 KnightOfTheRoundTable.java
3 Although we agree that “dependency injection” is a more accurate name than “inversion of control,”
we’re likely to use both terms interchangeably in this book.

Understanding inversion of control 17

 public KnightOfTheRoundTable(String name) {
 this.name = name;
 quest = new HolyGrailQuest();
 }

 public HolyGrail embarkOnQuest()
 throws GrailNotFoundException {
 return quest.embark();
 }
}

In listing 1.5 the knight is given a name as a parameter of its constructor. Its con-
structor sets the knight’s quest by instantiating a HolyGrailQuest. The implemen-
tation of HolyGrailQuest is fairly trivial, as shown in listing 1.6.

package com.springinaction.chapter01.knight;
public class HolyGrailQuest {
 public HolyGrailQuest() {}

 public HolyGrail embark() throws GrailNotFoundException {
 HolyGrail grail = null;
 // Look for grail
 …
 return grail;
 }
}

Satisfied with your work, you proudly check the code into version control. You
want to show it to the marketing team, but deep down something doesn’t feel
right. You almost dismiss it as the burrito you had for lunch when you realize the
problem: you haven’t written any unit tests.

Knightly testing
Unit testing is an important part of development. It not only ensures that each
individual unit functions as expected, but it also serves to document each unit in
the most accurate way possible. Seeking to rectify your failure to write unit tests,
you put together the test case (listing 1.7) for your knight class.

Listing 1.6 HolyGrailQuest.java

A knight gets its own quest

18 CHAPTER 1
A Spring jump start

package com.springinaction.chapter01.knight;

import junit.framework.TestCase;

public class KnightOfTheRoundTableTest extends TestCase {

 public void testEmbarkOnQuest() {
 KnightOfTheRoundTable knight =
 new KnightOfTheRoundTable("Bedivere");

 try {
 HolyGrail grail = knight.embarkOnQuest();

 assertNotNull(grail);

 assertTrue(grail.isHoly());
 } catch (GrailNotFoundException e) {
 fail();
 }
 }
}

After writing this test case, you set out to write a test case for HolyGrailQuest. But
before you even get started, you realize that the KnightOfTheRoundTableTest test
case indirectly tests HolyGrailQuest. You also wonder if you are testing all contin-
gencies. What would happen if HolyGrailQuest’s embark() method returned
null? Or what if it were to throw a GrailNotFoundException?

Who’s calling who?
The main problem so far with KnightOfTheRoundTable is with how it obtains a
HolyGrailQuest. Whether it is instantiating a new HolyGrail instance or obtaining
one via JNDI, each knight is responsible for getting its own quest (as shown in fig-
ure 1.2). Therefore, there is no way to test the knight class in isolation. As it

Listing 1.7 Testing the KnightOfTheRoundTable

Figure 1.2

A knight is responsible
for getting its own quest,
through instantiation or
some other means.

Understanding inversion of control 19

stands, every time you test KnightOfTheRoundTable, you will also indirectly test
HolyGrailQuest.

 What’s more, you have no way of telling HolyGrailQuest to behave differently
(e.g., return null or throw a GrailNotFoundException) for different tests. What
would help is if you could create a mock implementation of HolyGrailQuest that
lets you decide how it behaves. But even if you were to create a mock implemen-
tation, KnightOfTheRoundTable still retrieves its own HolyGrailQuest, meaning
you would have to make a change to KnightOfTheRoundTable to retrieve the mock
quest for testing purposes (and then change it back for production).

Decoupling with interfaces
The problem, in a word, is coupling. At this point, KnightOfTheRoundTable is stati-
cally coupled to HolyGrailQuest. They’re handcuffed together in such a way that
you can’t have a KnightOfTheRoundTable without also having a HolyGrailQuest.

 Coupling is a two-headed beast. On one hand, tightly coupled code is difficult
to test, difficult to reuse, difficult to understand, and typically exhibits “whack-a-
mole” bugs (i.e., fixing one bug results in the creation of one or more new bugs).
On the other hand, completely uncoupled code doesn’t do anything. In order to
do anything useful, classes need to know about each other somehow. Coupling is
necessary, but it should be managed very carefully.

 A common technique used to reduce coupling is to hide implementation
details behind interfaces so that the actual implementation class can be swapped
out without impacting the client class. For example, suppose you were to create a
Quest interface:

package com.springinaction.chapter01.knight;

public interface Quest {
 public abstract Object embark() throws QuestException;
}

Then, you change HolyGrailQuest to implement this interface. Also, notice that
embark now returns an Object and throws a QuestException.

package com.springinaction.chapter01.knight;

public class HolyGrailQuest implements Quest {
 public HolyGrailQuest() {}

 public Object embark() throws QuestException {

 // Do whatever it means to embark on a quest
 return new HolyGrail();
 }
}

20 CHAPTER 1
A Spring jump start

Also, the following method must also change in KnightOfTheRoundTable to be
compatible with these Quest types:

private Quest quest;
…
public Object embarkOnQuest() throws QuestException {
 return quest.embark();
}

Likewise, you could also have KnightOfTheRoundTable implement the following
Knight interface:

public interface Knight {
 public Object embarkOnQuest() throws QuestException;
}

Hiding your class’s implementation behind interfaces is certainly a step in the right
direction. But where many developers fall short is in how they retrieve a Quest
instance. For example, consider this possible change to KnightOfTheRoundTable:

public class KnightOfTheRoundTable implements Knight {

 private Quest quest;
 …

 public KnightOfTheRoundTable(String name) {
 quest = new HolyGrailQuest();
 …
 }

 public Object embarkOnQuest() throws QuestException {
 return quest.embark();
 }
}

Here the KnightOfTheRoundTable class embarks on a quest through the Quest
interface. But, the knight still retrieves a specific type of Quest (here a Holy-
GrailQuest). This isn’t much better than before. A KnightOfTheRoundTable is stuck
going only on quests for the Holy Grail and no other types of quest.

Giving and taking
The question you should be asking at this point is whether or not a knight should
be responsible for obtaining a quest. Or, should a knight be given a quest to

embark upon?

 Consider the following change to KnightOfTheRoundTable:

Understanding inversion of control 21

public class KnightOfTheRoundTable implements Knight {
 private Quest quest;
 …

 public KnightOfTheRoundTable(String name) {
 …
 }

 public HolyGrail embarkOnQuest() throws QuestException {
 …
 return quest.embark();
 }

 public void setQuest(Quest quest) {
 this.quest = quest;
 }
}

Notice the difference? Compare figure 1.3 with figure 1.2 to see the difference in
how a knight obtains its quest. Now the knight is given a quest instead of retriev-
ing one itself. KnightOfTheRoundTable is no longer responsible for retrieving its
own quests. And because it only knows about a quest through the Quest interface,
you could give a knight any implementation of Quest you want. In a production
system, maybe you would give it a HolyGrailQuest, but in a test case you would
give it a mock implementation of Quest.

 In a nutshell, that is what inversion of control is all about: the responsibility of
coordinating collaboration between dependent objects is transferred away from
the objects themselves. And that’s where lightweight container frameworks, such
as Spring, come into play.

Assigning a quest to a knight

Now that you’ve written your KnightOfTheRoundTable class to be given any arbi-
trary Quest object, how can you specify which Quest it should be given?

Figure 1.3
A knight is given a

quest through its
setQuest() method.

22 CHAPTER 1
A Spring jump start

The act of creating associations between application components is referred to as
wiring. In Spring, there are many ways to wire components together, but the most
common approach is via XML. Listing 1.8 shows a simple Spring configuration
file, knight.xml, that gives a quest (specifically, a HolyGrailQuest) to a Knight-
OfTheRoundTable.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN"
 "http://www.springframework.org/dtd/spring-beans.dtd">

<beans>
 <bean id="quest"
 class="com.springinaction.chapter01.knight.HolyGrailQuest"/>

 <bean id="knight"
 class="com.springinaction.chapter01.knight.KnightOfTheRoundTable">

 <constructor-arg>
 <value>Bedivere</value>
 </constructor-arg>
 <property name="quest">
 <ref bean="quest"/>
 </property>

 </bean>
</beans>

This is just a simple approach to wiring beans. Don’t worry too much about the
details of it right now. In chapter 2 we’ll explain more about what is going on
here, as well as show you even more ways you can wire your beans in Spring.

 Now that we’ve declared the relationship between a knight and a quest, we
need to load up the XML file and kick off the application.

Seeing it work
In a Spring application, a BeanFactory loads the bean definitions and wires the
beans together. Because the beans in the knight example are declared in an XML
file, an XmlBeanFactory is the appropriate factory for this example. The main()
method in listing 1.9 uses an XmlBeanFactory to load knight.xml and to get a ref-
erence to the “knight” object.

Listing 1.8 Wiring a quest to a knight in knight.xml

Define a quest

Define a knight

Set the knight’s name

Give the knight a quest

Understanding inversion of control 23

import org.springframework.beans.factory.BeanFactory;
import org.springframework.beans.factory.xml.XmlBeanFactory;

public class KnightApp {
 public static void main(String[] args) throws Exception {
 BeanFactory factory =
 new XmlBeanFactory(new FileInputStream("knight.xml"));

 KnightOfTheRoundTable knight =
 (KnightOfTheRoundTable) factory.getBean("knight");

 knight.embarkOnQuest();
 }
}

Once the application has a reference to the KnightOfTheRoundTable object, it simply
calls the embarkOnQuest() method to kick off the knight’s adventure. Notice that
this class knows nothing about the quest the knight will take. Again, the only thing
that knows which type of quest will be given to the knight is the knight.xml file.

 It’s been a lot of fun sending knights on quests using inversion of control, but
now let’s see how you can use IoC in your real-world enterprise applications.4

1.4.3 IoC in enterprise applications

Suppose that you’ve been tasked with writing an online shopping application.
Included in the application is an OrderServiceBean, implemented as a stateless
session bean. Now you want to have a class that creates an Order object from user
input (likely an HTML form) and call the createOrder() method on your Order-
ServiceBean, as shown in listing 1.10.

...
private OrderService orderService;

public void doRequest(HttpServletRequest request) {
 Order order = createOrder(request);
 OrderService orderService = getOrderService();
 orderService.createOrder(order);
}

Listing 1.9 Running the knight example

Load
the XML
beans
file

Retrieve a knight
from the factory

Send knight on its quest

Listing 1.10 Creating an order using EJB
4 This assumes that your real-world applications do not involve knights and quests. In the event that
your current project does involve knights and quests, you may disregard the next section.

24 CHAPTER 1
A Spring jump start

private OrderService getOrderService() throws CreateException {
 if (orderService == null) {
 Context initial = new InitialContext();
 Context myEnv = (Context) initial.lookup("java:comp/env");
 Object ref = myEnv.lookup("ejb/OrderServiceHome");
 OrderServiceHome home = (OrderServiceHome)
 PortableRemoteObject.narrow(ref, OrderService.class);
 orderService = home.create();
 }
 return orderService;
}
...

Notice that it took five lines of code just to get your OrderService object. Now imag-
ine having to do this everywhere you need an OrderService object. Now imagine
you have ten other EJBs in your application. That is a lot of code! But duplicating
this code everywhere would be ridiculous, so a ServiceLocator is typically used
instead. A ServiceLocator acts as a central point for obtaining and caching EJB-
Home references:

private OrderService getOrderService() {
 OrderServiceHome home =
 ServiceLocator.locate(OrderServiceHome);
 OrderService orderService = home.create();
}

While this removes the need to duplicate the lookup code everywhere in the
application, one problem still remains: we always have to explicitly look up our
services in our code.

 Now let’s see how this would be implemented in Spring:

private OrderService orderService;

public void doRequest(HttpServletRequest request) {
 Order order = createOrder(request);
 orderService.createOrder(order);
}

public void setOrderService(OrderService orderService) {
 this.orderService = orderService;
}

No lookup code! The reference to OrderService is given to our class by the Spring

Get
the JNDI
Context

Retrieve an EJB
Home from JNDI

Get the Remote object
from the Home object
container through the setOrderService() method. With Spring, we never have to
trouble ourselves with fetching our dependencies. Instead, our code can focus on
the task at hand.

http://home.create();
http://home.create();

Applying aspect-oriented programming 25

 But inversion of control is only one of the techniques that Spring offers to
JavaBeans. There’s another side to Spring that makes it a viable framework for
enterprise development. Let’s take a quick look at Spring’s support for aspect-
oriented programming.

1.5 Applying aspect-oriented programming

While inversion of control makes it possible to tie software components together
loosely, aspect-oriented programming enables you to capture functionality that is
used throughout your application in reusable components.

1.5.1 Introducing AOP

Aspect-oriented programming is often defined as a programming technique that
promotes separation of concerns within a software system. Systems are composed
of several components, each responsible for a specific piece of functionality.
Often, however, these components also carry additional responsibility beyond
their core functionality. System services such as logging, transaction manage-
ment, and security often find their way into components whose core responsibility
is something else. These system services are commonly referred to as cross-cutting
concerns because they tend to cut across multiple components in a system.

 By spreading these concerns across multiple components, you introduce two
levels of complexity to your code:

■ The code that implements the systemwide concerns is duplicated across
multiple components. This means that if you need to change how those
concerns work, you’ll need to visit multiple components. Even if you’ve
abstracted the concern to a separate module so that the impact to your
components is a single method call, that single method call is duplicated
in multiple places.

■ Your components are littered with code that isn’t aligned with their core
functionality. A method to add an entry to an address book should only be
concerned with how to add the address and not with whether it is secure or
transactional.

Figure 1.4 illustrates this complexity. The business objects on the left are too inti-
mately involved with the system services. Not only does each object know that it is

being logged, secured, and involved in a transactional context, but also each
object is responsible for performing those services for itself.

26 CHAPTER 1
A Spring jump start

AOP makes it possible to modularize these services and then apply them declara-
tively to the components that they should affect. This results in components that
are more cohesive and that focus on their own specific concerns, completely igno-
rant of any system services that may be involved.

 As shown in figure 1.5, it may help to think of aspects as blankets that cover
many components of an application. At its core, an application is comprised of
modules that implement the business functionality. With AOP, you can then cover

Figure 1.4 Calls to system-wide concerns such as logging and security are often
scattered about in modules where those concerns are not their primary concern.
Figure 1.5 Using AOP, systemwide concerns blanket the components
that they impact.

Applying aspect-oriented programming 27

your core application with layers of functionality. These layers can declaratively
be applied throughout your application in a flexible manner without your core
application even knowing they exist. This is a very powerful concept.

1.5.2 AOP in action

Let’s revisit our knight example to see how AOP works with Spring. Suppose that
after showing your progress to marketing, they came back with an additional
requirement. In this new requirement, a minstrel must accompany each knight,
chronicling the actions and deeds of the knight in song.5

 To start, you create a Minstrel class:

package com.springinaction.chapter01.knight;

import org.apache.log4j.Logger;

public class Minstrel {
 Logger song = Logger.getLogger(KnightOfTheRoundTable.class);
 public Minstrel() {}

 public void compose(String name, String message) {
 song.debug("Fa la la! Brave " + name + " did " + message + "!");
 }
}

In keeping with the IoC way of doing things, you alter KnightOfTheRoundTable to
be given an instance of Minstrel:

public class KnightOfTheRoundTable {
…
 private Minstrel minstrel;
 public void setMinstrel(Minstrel minstrel) {
 this.minstrel = minstrel;
 }

…

 public HolyGrail embarkOnQuest() throws QuestException {
 minstrel.compose(name, "embark on a quest");
 return quest.embark();
 }
}

5 Think of minstrels as musically inclined logging systems of medieval times.

28 CHAPTER 1
A Spring jump start

There’s only one problem. As it is, each knight
must stop and tell the minstrel to compose a
song before the knight can continue with his
quest (as in figure 1.6). Ideally a minstrel would
automatically compose songs without being
explicitly told to do so. A knight shouldn’t know
(or really even care) that their deeds are being
written into song. After all, you can’t have your knight being late for quests
because of a lazy minstrel.

 In short, the services of a minstrel transcend the duties of a knight. Another way
of stating this is to say that a minstrel’s services (song writing) are orthogonal to a
knight’s duties (embarking on quests). Therefore, it makes sense to implement a
minstrel as an aspect that adds its song-writing services to a knight. Probably the
simplest way to create an aspect-oriented minstrel is to change the minstrel class to
be an implementation of MethodBeforeAdvice, as shown in listing 1.11.

package com.springinaction.chapter01.knight;

import java.lang.reflect.Method;
import org.apache.log4j.Logger;
import org.springframework.aop.MethodBeforeAdvice;

public class MinstrelAdvice
 implements MethodBeforeAdvice {
 public MinstrelAdvice() {}

 public void before(Method method, Object[] args,
 Object target) throws Throwable {

 Knight knight = (Knight) target;

 Logger song =
 Logger.getLogger(target.getClass());

 song.debug("Brave " + knight.getName() +
 " did " + method.getName());
 }
}

Listing 1.11 An aspect-oriented minstrel

Figure 1.6 Without AOP, a knight
must tell his minstrel to compose
songs.

Advise method
before call

Get the advised
class’s logger

Applying aspect-oriented programming 29

As a subclass of MethodBefore-
Advice, the MinstrelAdvice

class will intercept calls to the
target object’s methods, giv-
ing the before() method an
opportunity to do something
before the target method gets
called. In this case, MinstrelAdvice naively assumes that the target object is a
KnightOfTheRoundTable and uses log4j as its mechanism for chronicling the
knight’s actions. As illustrated in figure 1.7, the knight needn’t worry about how
he is being sung about or even that the minstrel is writing the song.

 The knight no longer needs to tell this new aspect-oriented minstrel to sing
about the knight’s activities. In fact, the knight doesn’t even need to know that
the minstrel exists. But how does MinstrelAdvice know that it is supposed to
intercept calls to a Knight?

Weaving the aspect
Notice that there’s nothing about MinstrelAdvice that tells the Minstrel what
object it should sing about. Instead, a Minstrel’s services are applied to a Knight
declaratively. Applying advice to an object is known as weaving. In Spring, aspects
are woven into objects in the Spring XML file, much in the same way that beans
are wired together. Listing 1.12 shows the new knight.xml, modified to weave
MinstrelAdvice into a KnightOfTheRoundTable.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN"
 "http://www.springframework.org/dtd/spring-beans.dtd">

<beans>
 <bean id="quest"
 class="com.springinaction.chapter01.knight.HolyGrailQuest"/>

 <bean id="knightTarget"
 class="com.springinaction.chapter01.knight.KnightOfTheRoundTable">
 <constructor-arg><value>Bedivere</value></constructor-arg>

 <property name="quest"><ref bean="quest"/></property>
 </bean>

Listing 1.12 Weaving MinstrelAdvice into a knight

Figure 1.7
An aspect-oriented minstrel covers
a knight, chronicling the knight’s
activities without the knight’s
knowledge of the minstrel.

Create a minstrel
 <bean id="minstrel"
 class="com.springinaction.chapter01.knight.MinstrelAdvice"/>

instance

30 CHAPTER 1
A Spring jump start

 <bean id="knight"
 class="org.springframework.aop.framework.ProxyFactoryBean">
 <property name="proxyInterfaces">
 <list>
 <value>com.springinaction.chapter01.knight.Knight</value>
 </list>
 </property>
 <property name="interceptorNames">
 <list>
 <value>minstrel</value>
 </list>
 </property>
 <property name="target"><ref bean="knightTarget"/></property>
 </bean>
</beans>

Notice that the id of KnightOfTheRoundTable has changed from knight to
knightTarget and now knight points to a Spring class called ProxyFactoryBean.
What this means is that when the container is asked for a knight object, it will
return an object that intercepts calls to the target KnightOfTheRoundTable object,
giving MinstrelAdvice a shot at handling method calls first. Once Minstrel-
Advice is finished, control is returned to KnightOfTheRoundTable to perform the
knightly task.

 Don’t worry if this doesn’t make sense yet. We’ll explain Spring’s AOP support
in more detail in chapter 3. For now, suffice it to say that even though a knight’s
every move is being observed by a minstrel, the knight’s activities are in no way
hampered because of the minstrel’s presence.

 But Spring’s AOP can be used for even more practical things than composing
ageless sonnets about knights. As you’ll see, AOP can be used to provide enter-
prise services such as declarative transactions and security.

1.5.3 AOP in the enterprise
Enterprise applications often require certain services such as security and trans-
actional support. One way of applying these services is to code support for them
directly into the classes that use them. For example, to handle transactions, you
may place the following snippet throughout your code:

UserTransaction transaction = null;
try {
 transaction = ... {retrieve transaction}

Intercept calls
to the knight

Let minstrel handle call Let minstrel handle call first

Then let the knight
handle the call
 transaction.begin();

 ... do stuff...

Applying aspect-oriented programming 31

 transaction.commit();
} catch (Exception e) {
 if (transaction != null) transaction.rollback();
}

The problem with handling transactions this way is that you may repeat the same
transaction handling code several times—once for each time you need a transac-
tional context. What’s more, your application code is responsible for more than
its core functionality.

 EJB simplifies things by making it possible to declare these services and their
policies in the EJB deployment descriptor. With EJB it is possible to write com-
ponents that are ignorant of the fact that they are in a transactional context or
being secured and then declare the transactional and security policies for those
components in the EJB deployment descriptor. For example, to ensure that a
method is transactional in EJB, you simply place the following in the deploy-
ment descriptor:

<container-transaction>
 <method>
 <ejb-name>Foo</ejb-name>
 <method-intf>Remote</method-inf>
 <method-name>doSomething</method-name>
 </method>
 <trans-attribute>RequiresNew</trans-attribute>
</container-transaction>

EJB has hung its hat on how it simplifies infrastructure logic such as transactions
and security. But as we discussed in the introduction to this chapter, EJB has com-
plicated matters in other ways.

 Although Spring’s AOP support can be used to separate cross-cutting con-
cerns from your application’s core logic, its primary job is as the basis for
Spring’s support for declarative transactions. Spring comes with several aspects
that make it possible to declare transaction policies for JavaBeans. And the Acegi
Security System (another open-source project associated with Spring) provides
declarative security to JavaBeans. As with all Spring configuration, the transac-
tional and security policies are prescribed in a Spring configuration file.

NOTE Although the Spring framework comes packed with several frameworks
and support for several enterprise-level services, it does not come with
much to assist you with security. The Acegi security system uses Spring’s

AOP support as the foundation of a framework that adds declarative se-
curity to Spring-enabled applications. You will learn more about Acegi
in chapter 11.

32 CHAPTER 1
A Spring jump start

For example, suppose that instead of a knight your application handles student
registration for training courses. Perhaps you have a bean called StudentService-
Impl that implements the following interface:

public StudentService {
 public void registerForCourse(Student student, Course course);
}

This bean may be registered in the Spring bean XML file as follows:

<bean id="studentServiceTarget"
 class="com.springinaction.training.StudentServiceImpl"/>

StudentService’s registerForCourse() method should perform the following
actions:

1 Verify that there is an available seat in the course.

2 Add the student to the course’s roster.

3 Decrement the course’s available seat count by 1.

4 Notify the student by e-mail of a successful registration.

All of these actions should happen atomically. If anything goes bad, then all
should be rolled back as if nothing happened. Now imagine if instead of a min-
strel providing musical logging to this class, you were to apply one of Spring’s
transaction manager aspects. Applying transactional support to StudentService-
Impl might be as simple as adding the lines shown in listing 1.13 to the bean
XML file.

<bean id="transactionManager" class=
 "org.springframework.orm.hibernate.HibernateTransactionManager">
 <property name="sessionFactory">
 <ref bean="sessionFactory"/>
 </property>
</bean>

<bean id="studentService" class=
"org.springframework.transaction.interceptor.
 TransactionProxyFactoryBean">

 <property name="target">
 <ref bean="studentServiceTarget"/>

Listing 1.13 Declaring StudentService to be transactional

Declare transaction manager

➥

Apply transactions

 </property>

 <property name="transactionAttributes">
 <props>

Spring alternatives 33

 <prop key="registerForCourse">
 PROPAGATION_REQUIRES_NEW,ISOLATION_DEFAULT
 </prop>
 </props>
 </property>

 <property name="transactionManager">
 <ref bean="transactionManager"/>
 </property>
</bean>

Here we make use of Spring’s TransactionProxyFactoryBean. This is a conve-
nience proxy class that allows us to intercept method calls to an existing class and
apply a transaction context. In this case we are creating a proxy to our Student-
ServiceImpl class and applying a transaction to the registerForCourse() method.
We are also using HibernateTransactionManager, the implementation of a trans-
action manager you would most likely use if your application’s persistence layer is
based on Hibernate.

 Although this example leaves a lot to be explained, it should give you a
glimpse of how Spring’s AOP support can provide plain-vanilla JavaBeans with
declarative services such as transactions and security. We’ll dive into more details
of Spring’s declarative transaction support in chapter 5.

1.6 Spring alternatives

Whew! After that whirlwind introduction of Spring, you have a pretty good idea
of what it can do. Now you are probably chomping at the bit to get down into the
details so you can see how you can use Spring for your projects. But before we do
that, we need to cover what else is out there in the world of J2EE frameworks.

1.6.1 Comparing Spring to EJB

Because Spring comes with rich support for enterprise-level services, it is posi-
tioned as a viable alternative to EJB. But EJB, as opposed to Spring, is a well-
established platform. Therefore, the decision to choose one over the other is not
one to be taken lightly. Also, you do not necessarily have to choose only Spring or
EJB. Spring can be used to support existing EJBs as well, a topic that will be dis-
cussed in detail in chapter 7. With that in mind, it is important to know what

Declare
transaction

Inject transaction
these two have in common, what sets them apart, and the implications of choos-
ing either.

34 CHAPTER 1
A Spring jump start

EJB is a standard
Before we delve into the technical comparisons between Spring and EJB, there is
an important distinction that we need to make. EJB is a specification defined by the
JCP. Being a standard has some significant implications:

■ Wide industry support—There is a whole host of vendors that are supporting
this technology, including industry heavyweights Sun, IBM, Oracle, and
BEA. This means that EJB will be supported and actively developed for
many years to come. This is comforting to many companies because they
feel that by selecting EJB as their J2EE framework, they are going with a
safe choice.

■ Wide adoption—EJB as a technology is deployed in thousands of compa-
nies around the world. As a result, EJB is in the tool bag of most J2EE
developers. This means that if a developer knows EJB, they are more
likely to find a job. At the same time, companies know that if they adopt
EJB, there is an abundance of developers who are capable of developing
their applications.

■ Toolability—The EJB specification is a fixed target, making it easy for ven-
dors to produce tools to help developers create EJB applications more
quickly and easily. Dozens of applications are out there that do just that,
giving developers a wide range of EJB tool options.

Spring and EJB common ground

As J2EE containers, both Spring and EJB offer the developer powerful features for
developing applications. Table 1.1 lists the major features of both frameworks
and how the implementations compare.

Table 1.1 Spring and EJB feature comparison

Feature EJB Spring

Transaction
management

■ Must use a JTA transaction manager.
■ Supports transactions that span remote

method calls.

■ Supports multiple transaction environ-
ments through its PlatformTransac-
tionManager interface, including JTA,
Hibernate, JDO, and JDBC.

■ Does not natively support distributed
transactions—it must be used with a JTA

transaction manager.

continued on next page

Spring alternatives 35

For most J2EE projects, the technology requirements will be met by either Spring
or EJB. There are exceptions—your application may need to be able to support
remote transaction calls. If that is the case, EJB may seem like the the way to go.
Even then, Spring integrates with a Java Transaction API (JTA) transaction pro-
viders, so even this scenario is cut-and-dried. But if you are looking for a J2EE
framework that provides declarative transaction management and a flexible per-
sistence engine, Spring is a great choice. It lets you choose the features you want
without the added complexities of EJB.

The complexities of EJB

So what are the complexities of EJB? Why is there such a shift toward lightweight
containers? Here are a few of the complexities of EJB that turn off many developers:

■ Writing an EJB is overly complicated—To write an EJB, you have to touch at
least four files: the business interface, the home interface, the bean imple-

Declarative
transaction
support

■ Can define transactions declaratively
through the deployment descriptor.

■ Can define transaction behavior per
method or per class by using the wild-
card character *.

■ Cannot declaratively define rollback
behavior—this must be done program-
matically.

■ Can define transactions declaratively
through the Spring configuration file or
through class metadata.

■ Can define which methods to apply
transaction behavior explicitly or by using
regular expressions.

■ Can declaratively define rollback behav-
ior per method and per exception type.

Persistence ■ Supports programmatic bean-managed
persistence and declarative container
managed persistence.

■ Provides a framework for integrating with
several persistence technologies, includ-
ing JDBC, Hibernate, JDO, and iBATIS.

Declarative
security

■ Supports declarative security through
users and roles. The management and
implementation of users and roles is
container specific.

■ Declarative security is configured in the
deployment descriptor.

■ No security implementation out-of-the
box.

■ Acegi, an open source security frame-
work built on top of Spring, provides
declarative security through the Spring
configuration file or class metadata.

Distributed
computing

■ Provides container-managed remote
method calls.

■ Provides proxying for remote calls via
RMI, JAX-RPC, and web services.

Table 1.1 Spring and EJB feature comparison (continued)

Feature EJB Spring
mentation, and the deployment descriptor. Other classes are likely to be
involved as well, such as utility classes and value objects. That’s quite a

36 CHAPTER 1
A Spring jump start

proliferation of files when all you are looking for is to add some container
services to your implementation class. Conversely, Spring lets you define
your implementation as a POJO and wire in any additional services needs
through injection or AOP.

■ EJB is invasive—This goes hand in hand with the previous point. In order
to use the services provided by the EJB container, you must use the
javax.ejb interfaces. This binds your component code to the EJB tech-
nology, making it difficult (if not possible) to use the component outside
of an EJB container. With Spring, components are typically not required
to implement, extend, or use any Spring-specific classes or interfaces,
making it possible to reuse the components anywhere, even in the
absence of Spring.

■ Entity EJBs fall short—Entity EJBs are not as flexible or feature-rich as other
ORM tools. Spring recognizes there are some great ORM tools out there,
such as Hibernate and JDO, and provides a rich framework for integrating
them into your application. And since an entity bean could represent a
remote object, the Value Object pattern was introduced to pass data to and
from the EJB tier in a course-grained object. But value objects lead to code
duplication—you write each persistent property twice: once in the entity
bean and once in your value object. Using Spring together with Hibernate
or another ORM framework, your application’s entity objects are not directly
coupled with their persistence mechanism. This makes them light enough
to be passed across application tiers.

Again, in most J2EE applications, the features provided by EJB may not be worth
the compromises you will have to make. Spring provides nearly all of the services
provided by an EJB container while allowing you to develop much simpler code.
In other words, for a great number of J2EE applications, Spring makes sense. And
now that you know the differences between Spring and EJB, you should have a
good idea which framework fits your needs best.

1.6.2 Considering other lightweight containers

Spring is not the only lightweight container available. In the last few years, more
and more Java developers have been seeking an alternative to EJB. As a result,

several lightweight containers have been developed with different methods for
achieving inversion of control.

Spring alternatives 37

 Table 1.2 lists the types of IoC. These were first described with the nondescript
“Type X” convention, but have since shifted to more meaningful names. We will
always refer to them by the name.

Although the focus of this book is on Spring, it may be interesting to see how
these other containers stack up to Spring. Let’s take a quick look at some of the
other lightweight containers, starting with PicoContainer.

PicoContainer
PicoContainer is a minimal lightweight container that provides IoC in the form
of constructor and setter injection (although it favors constructor injection). We
use the word minimal to describe PicoContainer because, with it small size (~50k),
it has a sparse API. PicoContainer provides the bare essentials to create an IoC
container and expects to be extended by other subprojects and applications. By
itself, you can only assemble components programmatically through PicoCon-
tainer’s API. Since this would be a cumbersome approach for anything but the
most trivial applications, there is a subproject named NanoContainer that pro-
vides support for configuring PicoContainer through XML and various scripting
languages. However, at the time of this writing, NanoContainer does not appear
to be production-ready.

 One of the limitations of PicoContainer is that it allows only one instance of
any particular type to be present in its registry. This is could lead to problems if
you need more than one instance of the same class, just configured differently.
For example, you may want to have two instances of a javax.sql.DataSource in
your application, each configured for a different database. This would not be pos-
sible in PicoContainer.

Table 1.2 Inversion of Control types

Type Name Description

Type 1 Interface Dependent Beans must implement specific interfaces to have their depen-
dencies managed by the container.

Type 2 Setter Injection Dependencies and properties are configured through a bean’s
setter methods.

Type 3 Constructor Injection Dependencies and properties are configured through the bean’s
constructor.
 Also, you should know that PicoContainer is only a container. It does not offer
any of the other powerful features that Spring has, such as AOP and third-party
framework integration.

38 CHAPTER 1
A Spring jump start

HiveMind
HiveMind is a relatively new IoC container. Like PicoContainer, it focuses on wir-
ing and configuring services with support for both constructor and setter injec-
tion. HiveMind allows you to define your configuration in an XML file or in
HiveMind’s Simple Data Language.

 HiveMind also provides an AOP-like feature with its Interceptors. This allows
you to wrap a service with Interceptors to provide additional functionality. How-
ever, this is not nearly as powerful as Spring’s AOP framework.

 Finally, like PicoContainer, HiveMind is only a container. It provides a frame-
work for managing components but offers no integration with other technologies.

Avalon
Avalon was one of the first IoC containers developed. As with many early entrants
into a market, some mistakes were made in its design. Mainly, Avalon provides
interface-dependent IoC. In other words, in order for your objects to be managed
by the Avalon container, they must implement Avalon-specific interfaces. This
makes Avalon an invasive framework; you must change your code in order for it to
be usable by the container. This is not desirable because it couples your code to a
particular framework for even the simplest of cases.

 We believe that if Avalon does not adopt a more flexible means of managing
components, it will eventually fade out of the lightweight container market; there
are other ways of achieving the same results with much less rigidity.

1.6.3 Web frameworks

Spring comes with its own very capable web framework. It provides features
found in most other web frameworks, such as automatic form data binding and
validation, multipart request handling, and support for multiple view technolo-
gies. We’ll talk more about Spring’s web framework in chapter 8. But for now, let’s
take a look at how Spring measures up to some popular web frameworks

Struts

Struts can probably be considered the de facto standard for web MVC frameworks.
In has been around for several years, was the first “Model 2” framework to gain
wide adoption and has been used in thousands of Java projects. As a result, there

is an abundance of resources available on Struts.

 The Struts class you will use the most is the Action class. It is important to note
that this is a class and not an interface. This means all your classes that handle

Spring alternatives 39

input will need to subclass Action. This in contrast to Spring, which provides a
Controller interface that you can implement.

 Another important difference is how each handles form input. Typically, when
a user is submitting a web form, the incoming data maps to an object in your
application. In order to handle form submissions, Struts requires you have
ActionForm classes to handle the incoming parameters. This means you need to
create a class solely for mapping form submissions to your domain objects.
Spring allows you to map form submissions directly to an object without the need
for an intermediary, leading to eaiser maintenance.

 Also, Struts comes with built-in support for declarative form validation. This
means you can define rules for validating incoming form data in XML. This keeps
validation logic out of your code, where it can be cumbersome and messy. Spring
does not come with declarative validation. This does not mean you cannot use
this within Spring; you will just have to integrate this functionality yourself using
a validation framework, such as the Jakarta Commons Validator.

 If you already have an investment in Struts or you just prefer it as your web
framework, Spring has a package devoted to integrating Struts with Spring.

 Furthermore, Struts is a mature framework with a significant following in the
Java development community. Much has been written about Struts, including Ted
Husted’s Struts in Action (Manning, 2002).

WebWork
WebWork is another MVC framework. Like Struts and Spring, it supports multiple
view technologies. One of the biggest differentiators for WebWork is that it adds
another layer of abstraction for handling web requests. The core interface for
handling requests is the Action interface, which has one method: execute().
Notice that this interface is not tied to the web layer in any way. The WebWork
designers went out of their way to make the Action interface unaware that it could
be used in a web context. This is good or bad, depending on your perspective.
Most of the time it will be used in a web application, so hiding this fact through
abstraction does not buy you much.

 A feature that WebWork provides that Spring does not (at least, not explicitly)
is action chaining. This allows you to map a logical request to a series of Actions.
This means you can create several Action objects that all perform discrete tasks
and chain them together to execute a single web request.
Tapestry
Tapestry is another open source web framework that is quite different than ones
mentioned previously. Tapestry does not provide a framework around the

40 CHAPTER 1
A Spring jump start

request-response servlet mechanism, like Struts or WebWork. Instead, it is a
framework for creating web applications from reusable components (if you are
familiar with Apple’s WebObjects, Tapestry was inspired by its design).

 The idea behind Tapestry is to relieve the developer from thinking about Ses-
sion attributes and URLs, and instead think of web applications in terms of com-
ponents and methods. Tapestry takes on the other responsibilities, such as
managing user state and mapping URLs to methods and objects.

 Tapestry provides a view mechanism as well. That is, Tapestry is not a framework
for using JSPs—it is an alternative to JSPs. Much of Tapestry’s power lies in its custom
tags that are embedded with HTML documents and used by the Tapestry frame-
work. Needless to say, Tapestry provides a unique web application framework. To
learn more about Tapestry, take a look at Tapestry in Action (Manning, 2004).

1.6.4 Persistence frameworks

There really isn’t a direct comparison between Spring and any persistence frame-
work. As mentioned earlier, Spring does not contain any built-in persistence
framework. Instead, Spring’s developers recognized there were already several
good frameworks for this and felt no need to reinvent the wheel. They created an
ORM module that integrates these frameworks with rest of Spring. Spring pro-
vides integration points for Hibernate, JDO, OJB, and iBATIS.

 Spring also provides a very rich framework for writing JDBC. JDBC requires a lot
of boilerplate code (getting resources, executing statements, iterating though query
results, exception handling, cleaning up resources). Spring’s JDBC module handles
this boilerplate, allowing you to focus on writing queries and handling the results.

 Spring’s JDBC and ORM frameworks work within Spring’s transaction man-
agement framework. This means you can use declarative transactions with just
about any persistence framework you choose.

1.7 Summary

You should now have a pretty good idea of what Spring brings to the table. Spring
aims to make J2EE development easier, and central to this is its inversion of con-
trol. This enables you to develop enterprise applications using simple Java
objects that collaborate with each other through interfaces. These beans will be
wired together at runtime by the Spring container. It lets you maintain loosely

coupled code with minimal cost.

 On top of Spring’s inversion control, Spring’s container also offers AOP. This
allows you place code that would otherwise be scattered throughout you application

Summary 41

in one place—an aspect. When your beans are wired together, these aspects can
be woven in at runtime, giving these beans new behavior.

 Staying true to aiding enterprise development, Spring offers integration to
several persistence technologies. Whether you persist data using JDBC, Hiber-
nate, or JDO, Spring’s DAO frameworks ease your development by providing a
consistent model for error handling and resource management for each of these
persistence frameworks.

 Complementing the persistence integration is Spring’s transaction support.
Through AOP, you can add declarative transaction support to your application
without EJB. Spring also supports a variety of transaction scenarios, including
integration with JTA transactions for distributed transactions.

 Filling out its support for the middle tier, Spring offers integration with other
various J2EE services, such as mail, EJBs, web services, and JNDI. With its inver-
sion of control, Spring can easily configure these services and provide your appli-
cation objects with simpler interfaces.

 To help with the presentation tier, Spring supports multiple view technologies.
This includes web presentation technologies like Velocity and JSP as well as sup-
port for creating Microsoft Excel spreadsheets and Adobe Acrobat Portable Doc-
ument Format (PDF) files. And on top of the presentation, Spring comes with a
built-in MVC framework. This offers an alternative to other web frameworks like
Struts and WebWork and more easily integrates with all of the Spring services.

 So without further ado, let’s move on to chapter 2 to learn more about exactly
how Spring’s core container works.

Wiring beans
This chapter covers
■ Wiring bean properties with XML
■ Comparing manual wiring and autowiring
■ Managing bean life-cycle events
■ Publishing and handling application events
42

Wiring beans 43

Have you ever stuck around after a movie long enough to watch the credits? It’s
incredible how many different people it takes to pull together a major motion pic-
ture. There are the obvious participants: the actors, the scriptwriters, the directors,
and the producers. Then there are the not-so-obvious: the musicians, the special
effects crew, and the art directors. And that’s not to mention the key grip, the sound
mixer, the costumers, the makeup artists, the stunt coordinators, the publicists, the
first assistant to the cameraman, the second assistant to the cameraman, the set
designers, the gaffer, and (perhaps most importantly) the caterers.

 Now imagine what your favorite movie would have been like had none of these
people talked to each other. Let’s say that they all showed up at the studio and
started doing their own thing without any coordination. If the director keeps to
himself and doesn’t say “roll ’em,” the cameraman won’t start shooting. It proba-
bly wouldn’t matter anyway, because the lead actress would still be in her trailer
and the lighting wouldn’t work because the gaffer would not have been hired.

 Maybe you’ve seen a movie where it looks like this is what happened. But most
movies (the good ones anyway) are the product of hundreds of people working
together toward the common goal of making a blockbuster movie.

 In this respect, a great piece of software isn’t much different. Any nontrivial
application is made up of several components that must work together to meet a
business goal. These components must be aware of each other and talk to each
other to get their job done. In an online shopping application, for instance, an
order manager component may need to work with a product manager compo-
nent and a credit card authorization component. All of these will likely need to
work with a data access component to read and write from a database.

 But as we saw in chapter 1, the traditional approach to creating associations
between application objects (via construction or lookup) leads to complicated
code that is difficult to reuse and unit-test. In the best case, these components do
more work than they should, and in the worst case, they are highly coupled to
each other, making them hard to reuse and hard to test.

 In Spring, components are not responsible for managing their associations
with other components. Instead, they are given references to collaborating com-
ponents by the container. The act of creating these associations between applica-
tion components is known as wiring. And that is what we are going to cover in this
chapter—wiring. You will discover that Spring’s wiring goes far beyond establish-
ing an association between two objects. You will learn how you can also use Spring

to configure all of your beans’ properties, externalize deployment configurations
in separate files, and manage the life cycle of your beans. Boy, there sure is a lot to
this wiring business.

44 CHAPTER 2
Wiring beans

2.1 Containing your beans

As we promised, we will cover Spring’s wiring in depth. But before we go down that
road, it is important to understand what is controlling the wiring…and the config-
uring…and the life-cycle management. Whenever you configure any beans for the
Spring framework, you are giving instructions to the Spring container. Under-
standing the container helps you understand how your beans will be managed.

 The container is at the core of the Spring framework. Spring’s container uses
inversion of control (IoC) to manage the components that make up an applica-
tion. This includes creating associations between collaborating components. As
such, these objects are cleaner and easier to understand, they support reuse, and
they are easy to unit-test.

 There is no single Spring container. Spring actually comes with two distinct
types of containers: Bean factories (defined by the org.springframework.

beans.factory.BeanFactory interface) are the simplest of containers, providing
basic support for dependency injection. Application contexts (defined by the
org.springframework.context.ApplicationContext interface) build on the notion
of a bean factory by providing application framework services such as the ability
to resolve textual messages from a properties file and the ability to publish appli-
cation events to interested event listeners.

NOTE Although Spring uses the words “bean” and “JavaBean” liberally when
referring to application components, this does not mean that a Spring
component must follow the JavaBeans specification to the letter. A
Spring component can be any type of POJO (plain-old Java object). In
this book, assume the loose definition of JavaBean, which is synonymous
with POJO.

Beyond these two basic types of containers, Spring comes with several implemen-
tations of BeanFactory and ApplicationContext. Unless there is a need to specifi-
cally state which type of container is being used, we’ll refer to both bean factories
and application contexts synonymously with the word “container.”

 Let’s start our exploration of Spring containers with the most basic of the
Spring containers: the BeanFactory.

2.1.1 Introducing the BeanFactory
As its name implies, a bean factory is an implementation of the factory design
pattern. That is, it is a class whose responsibility is to create and dispense beans.

Containing your beans 45

But unlike many implementations of the factory pattern, which often dole out a
single type of object, a bean factory is a general-purpose factory, creating and dis-
pensing many types of beans.

 But there’s more to a bean factory than simply instantiation and delivery of
application objects. Because a bean factory knows about many objects within an
application, it is able to create associations between collaborating objects as they
are instantiated. This removes the burden of configuration from the bean itself
and the bean’s client. As a result, when a bean factory hands out objects, those
objects are fully configured, are aware of their collaborating objects, and are
ready to use. What’s more, a bean factory also takes part in the life cycle of a bean,
making calls to custom initialization and destruction methods, if those methods
are defined.

 There are several implementations of BeanFactory in Spring. But the most
useful one is org.springframework.beans.factory.xml.XmlBeanFactory, which
loads its beans based on the definitions contained in an XML file.

 To create an XmlBeanFactory, pass a java.io.InputStream to the constructor.
The InputStream will provide the XML to the factory. For example, the following
code snippet uses a java.io.FileInputStream to provide a bean definition XML
file to XmlBeanFactory:

BeanFactory factory =
 new XmlBeanFactory(new FileInputStream("beans.xml"));

This simple line of code tells the bean factory to read the bean definitions from
the XML file. But the bean factory doesn’t instantiate the beans just yet. Beans are
“lazily” loaded into bean factories, meaning that while the bean factory will
immediately load the bean definitions (the description of beans and their prop-
erties), the beans themselves will not be instantiated until they are needed.

 To retrieve a bean from a BeanFactory, simply call the getBean() method, pass-
ing the name of the bean you want to retrieve:

MyBean myBean = (MyBean) factory.getBean("myBean");

When getBean() is called, the factory will instantiate the bean and begin setting
the bean’s properties using dependency injection. Thus begins the life of a bean
within the Spring container. We’ll examine the life cycle of a bean in section 2.1.3,
but first let’s look at the other Spring container, the application context.

46 CHAPTER 2
Wiring beans

2.1.2 Working with an application context

A bean factory is fine for simple applications, but to take advantage of the full
power of the Spring framework, you may want to move up to Spring’s more
advanced container, the application context.

 On the surface, an ApplicationContext is much the same as a BeanFactory.
Both load bean definitions, wire beans together, and dispense beans upon
request. But an ApplicationContext offers much more:

■ Application contexts provide a means for resolving text messages, includ-
ing support for internationalization (I18N) of those messages.

■ Application contexts provide a generic way to load file resources, such as images.
■ Application contexts can publish events to beans that are registered as listeners.

Because of the additional functionality it provides, an ApplicationContext is
preferred over a BeanFactory in nearly all applications. The only times you
might consider using a BeanFactory are in circumstances where resources are
scarce, such as a mobile device. We will be using an ApplicationContext through-
out this book.

 Among the many implementations of ApplicationContext are three that are
commonly used:

■ ClassPathXmlApplicationContext—Loads a context definition from an
XML file located in the class path, treating context definition files as class
path resources.

■ FileSystemXmlApplicationContext—Loads a context definition from an
XML file in the filesystem.

■ XmlWebApplicationContext—Loads context definitions from an XML file
contained within a web application.

We’ll talk more about XmlWebApplicationContext in chapter 8 when we discuss
web-based Spring applications. For now, let’s simply load the application context
from the file system using FileSystemXmlApplicationContext, or from the class
path using ClassPathXmlApplicationContext.

 Loading an application context from the file system or from the class path is
very similar to how you load beans into a bean factory. For example, here’s how
you’d load a FileSystemXmlApplicationContext:
ApplicationContext context =
 new FileSystemXmlApplicationContext("c:/foo.xml");

Containing your beans 47

Similarly, you can load an application context from within the application’s class
path using ClassPathXmlApplicationContext:

ApplicationContext context =
 new ClassPathXmlApplicationContext("foo.xml");

The difference between these uses of FileSystemXmlApplicationContext and
ClassPathXmlApplicationContext is that FileSystemXmlApplicationContext will
look for foo.xml in a specific location, whereas ClassPathXmlApplicationContext
will look for foo.xml anywhere in the class path.

 In either case, you can retrieve a bean from an ApplicationContext just as you
would from a BeanFactory: by using the getBean() method. This is no surprise
because the ApplicationContext interface extends the BeanFactory interface.

 Aside from the additional functionality offered by application contexts,
another big difference between an application context and a bean factory is how
singleton beans are loaded. A bean factory lazily loads all beans, deferring bean
creation until the getBean() method is called. An application context is a bit
smarter and preloads all singleton beans upon context startup. By preloading
singleton beans, you ensure that they will be ready to use when needed—your
application won’t have to wait for them to be created.

 Now that you know the basics of how to configure a Spring container, let’s take
a closer look at your bean’s existence within the container.

2.1.3 A bean’s life
In a traditional Java application, the life cycle of a bean is fairly simple. Java’s new
keyword is used to instantiate the bean (or perhaps it is deserialized) and it’s
ready to use. In contrast, the life cycle of a bean within a Spring container is a bit
more elaborate. It is important to understand the life cycle of a Spring bean,
because you may want to take advantage of some of the opportunities that Spring
offers to customize how a bean is created.

 Figure 2.1 shows the startup life cycle of a typical bean as it is loaded into a
BeanFactory container.

 As you can see, a bean factory performs several setup steps before a bean is
ready to use. The following list explains each of these steps in more detail:

1 The container finds the bean’s definition and instantiates the bean.

2 Using dependency injection, Spring populates all of the properties as

specified in the bean definition.

3 If the bean implements the BeanNameAware interface, the factory calls
setBeanName() passing the bean’s ID.

48 CHAPTER 2
Wiring beans

4 If the bean implements the BeanFactoryAware interface, the factory calls
setBeanFactory(), passing an instance of itself.

5 If there are any BeanPostProcessors associated with the bean, their post-
ProcessBeforeInitialization() methods will be called.

6 If an init-method is specified for the bean, it will be called.

7 Finally, if there are any BeanPostProcessors associated with the bean,
their postProcessAfterInitialization() methods will be called.

At this point, the bean is ready to be used by an application and will remain in the
bean factory until it is no longer needed. It is removed from the bean factory in
two ways.
Figure 2.1 The life cycle of a bean within a Spring bean factory container

Containing your beans 49

1 If the bean implements the DisposableBean interface, the destroy()
method is called.

2 If a custom destroy-method is specified, it will be called.

The life cycle of a bean within a Spring application context differs only slightly
from that of a bean within a bean factory, as shown in figure 2.2.
Figure 2.2 The life cycle of a bean in a Spring application context

50 CHAPTER 2
Wiring beans

The only difference here is that if the bean implements the ApplicationContext-
Aware interface, the setApplicationContext() method is called.

 Regardless of which container you use, you’ll need to tell Spring about your
application’s beans and how they are related. Let’s take a look at how to place
beans within the Spring container using XML.

2.2 Basic wiring

Piecing together beans within the Spring container is known as wiring. When wir-
ing beans, you tell the container what beans are needed and how the container
should use dependency injection to tie them together.

 Despite its name, basic wiring doesn’t require that you have an electrician’s
license. You only need to know a little XML. But before we get into the details of
wiring beans using XML, let’s set the stage for the sample application you’ll build
while learning how to work with Spring.

 Suppose that you’re contracted by Spring Training, Inc., a technical training
organization. Spring Training wants you to build an application that enables stu-
dents to register for courses online.

 To get started, let’s build the service layer of the application. Figure 2.3 shows
the objects that make up this portion of the Spring Training application.

 There are two service components in the service layer: a student service and
a course service. The student service handles all student-related matters, while
the course service is responsible for course-related functionality. These services
are defined by interfaces. The StudentService interface is as follows:

public interface StudentService {
 public Student getStudent(String id);
 public void createStudent(Student student);
 public java.util.Set getCompletedCourses(Student student);
}

And the CourseService looks like this:

public interface CourseService {
 public Course getCourse(String id);
 public void createCourse(Course course);
 public java.util.Set getAllCourses();
 public void enrollStudentInCourse(Course course,
 Student student) throws CourseException;

}

Basic wiring 51

StudentServiceImpl (listing 2.1) is the implementation of the StudentService
interface.

package com.springinaction.service.training;

public class StudentServiceImpl implements StudentService {
 private StudentDao studentDao;

 public StudentServiceImpl(StudentDao dao) {
 studentDao = dao;
 }

 public void setStudentDao(StudentDao dao) {
 studentDao = dao;
 }

 public Student getStudent(String id) {

Listing 2.1 A student service handles student-related functionality

Figure 2.3
The beans that make
up the service layer of
the Spring Training
application

Inject by constructor…

Or by setter
 return studentDao.findById(id);
 }

52 CHAPTER 2
Wiring beans

 public void createStudent(Student student) {
 studentDao.create(student);
 }

 public java.util.Set getCompletedCourses(Student student) {
 return studentDao.getCompletedCourses(student);
 }
}

StudentServiceImpl delegates much of its responsibility to a StudentDao. A
StudentDao handles interaction with the database to read and write student infor-
mation. The actual implementation of the StudentDao object isn’t important right
now (we’ll flesh it out in more detail in chapter 4 when we talk about working with
databases). For the time being, just assume an implementation of StudentDao
named StudentDaoImpl.

 Notice that there are two ways that a StudentServiceImpl can be given a refer-
ence to its StudentDao: either via its constructor or via the setStudentDao() method.

 CourseServiceImpl (listing 2.2), the implementation of CourseService, is
slightly more interesting than StudentServiceImpl. For the most part, CourseSer-
viceImpl delegates responsibility to a CourseDao object. But the enrollStudentIn-
Course() method needs to be smarter. Before a student may enroll in a course, he
must have completed all of the prerequisite courses.

package com.springinaction.service.training;

import java.util.Iterator;
import java.util.Set;

public class CourseServiceImpl implements CourseService {
 private CourseDao courseDao;
 private StudentService studentService;
 private int maxStudents;

 public CourseServiceImpl(CourseDao dao) {
 this.courseDao = dao;
 }

 public void setStudentService(StudentService service) {

Listing 2.2 CourseServiceImpl.java

Set CourseDao via
constructor injection
 this.studentService = service;
 }

Basic wiring 53

 public void setMaxStudents(int maxStudents) {
 this.maxStudents = maxStudents;
 }

 pubic int getMaxStudents() {
 return maxStudents;
 }

 public Course getCourse(String id) {
 return courseDao.findById(id);
 }

 public void createCourse(Course course) {
 courseDao.create(course);
 }

 public void enrollStudentInCourse(Course course,
 Student student) throws CourseException {

 if(course.getStudents().size() >= maxStudents) {
 throw new CourseException("Course is full");
 }

 enforcePrerequisites(course, student);

 course.getStudents().add(student);

 courseDao.update(course);
 }

 private void enforcePrerequisites(Course course,
 Student student) throws CourseException {

 Set completed =
 studentService.getCompletedCourses(student);
 Set prereqs = course.getPrerequisites();

 for(Iterator iter = prereqs.iterator(); iter.hasNext();) {
 if(!completed.contains(iter.next())) {
 throw new CourseException("Prerequisites are not met.");
 }
 }
 }
}

As with StudentServiceImpl, CourseServiceImpl receives its CourseDao reference

through its constructor. Again let’s just assume an implementation of CourseDao,
for now called CourseDaoImpl.

54 CHAPTER 2
Wiring beans

 The enrollStudentInCourse() method makes a call to enforcePrerequi-
sites() prior to adding the student to the course. If the student hasn’t met the
prerequisites, enforcePrerequisites() will throw a CourseException, which is
summarily rethrown by enrollStudentInCourse().

 Notice that enforcePrerequisites() uses a reference to a StudentService
implementation to retrieve all of a student’s completed courses. This means that
in addition to CourseDao, CourseServiceImpl collaborates with StudentService to
ensure that the business requirement of prerequisites is met. CourseServiceImpl
receives its reference to a StudentService via the setStudentService() method,
unlike CourseDao, which is set through the constructor. The motivation behind
this decision is that the courseDao property is used by most of CourseServiceImpl,
so you shouldn’t be able to create a CourseServiceImpl instance without setting
the courseDao property. But only the enforcePrerequisites() method requires a
reference to a StudentService, so it can be optionally set if needed.

 Now that the stage has been set, let’s see how we can wire our components into
our application through a Spring wiring file (“spring-training.xml”).

2.2.1 Wiring with XML

In theory, bean wiring can be driven from virtually any configuration source,
including properties files, a relational database, or even an LDAP directory. But in
practice, XML is the configuration source of choice for most Spring-enabled
applications and is the way we’ll wire beans throughout this book.

 Several Spring containers support wiring through XML, including

■ XmlBeanFactory—A simple BeanFactory that loads a context definition file
by way of a java.io.InputStream.

■ ClassPathXmlApplicationContext—An application context that loads the
context definition file from the class path.

■ FileSystemXmlApplicationContext—An application context that loads the
context definition file from the file system.

■ XmlWebApplicationContext—An application context used with Spring-
enabled web applications that loads the context definition file from a web
application context. We’ll look at this container in chapter 8 when we talk
about using Spring with web applications.

All of these XML-oriented containers have their beans defined by a remarkably

simple XML file. At the root of the context definition file is the <beans> element.
This <beans> has one or more <bean> subelements. Each <bean> element (not

Basic wiring 55

surprisingly) defines a JavaBean (or any Java object, actually) to be configured
within the Spring container.

 For example, the XML file in listing 2.3 shows a trivial context definition file
for Spring.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN"
 "http://www.springframework.org/dtd/spring-beans.dtd">

<beans>
 <bean id="foo"
 class="com.springinaction.Foo"/>

 <bean id="bar"
 class="com.springinaction.Bar"/>
</beans>

This simple bean wiring XML file configures two beans, named foo and bar, in the
Spring container. Let’s take a closer look at how the <bean> element defines a
bean within an application context.

2.2.2 Adding a bean

The most basic configuration for any bean in Spring involves the bean’s ID and its
fully qualified class name. Adding a bean to the Spring container is as simple as
adding a <bean> element to the container’s XML file, similar to this:

For example, let’s start a bean definition XML file for the Spring Training appli-
cation by adding definitions of the implementations of CourseDao and Student-
Dao, as shown in listing 2.4.

Listing 2.3 Configuring beans within a Spring container

The root element

Bean
instances

56 CHAPTER 2
Wiring beans

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN"
 "http://www.springframework.org/dtd/spring-beans.dtd">

<beans>
 <bean id="courseDao"
 class="com.springinaction.training.service.CourseDaoImpl"/>

 <bean id="studentDao"
 class="com.springinaction.training.service.StudentDaoImpl"/>
</beans>

As far as you know, CourseDaoImpl and StudentDaoImpl have no collaborators or
other properties to be configured (that’s why they’re dummy implementations),
so the lines in listing 2.4 are sufficient to tell Spring how to load them into the
application context. And as simple as this configuration may be, it still serves as
an illustration of how beans are uniquely defined in a Spring container.

Prototyping vs. singleton
By default, all Spring beans are singletons. When the container dispenses a
bean (either as the result of a call to getBean() or through wiring), it will always
give the exact same instance of the bean. But what if you want the context to
return a unique instance each time it is asked for a specific bean? What if you
need a unique instance of a bean each time it is retrieved from the container?

 In this case, you would want to define a prototype bean. Defining a prototype
means that instead of defining a single bean, you define a blueprint. Beans are
then created based on this blueprint.

 The singleton property of <bean> tells the context whether or not a bean is to
be defined as a singleton. By default it is set to true, but setting it to false results
in a bean being defined as a prototype:

Listing 2.4 Wiring the DAO beans into the container

Register the courseDao bean

Register the studentDao bean
Prototyped beans are useful when you want the container to give a unique
instance of a bean each time it is asked for, but you still want to configure one or

Basic wiring 57

more properties of that bean through Spring. For example, let’s change the stu-
dentDao bean’s definition so that a new instance is created every time it is needed:

<bean id="studentDao"
 class="com.springinaction.training.service.StudentDaoImpl"
 singleton="false"/>

Bear in mind that a new instance of a prototype bean will be created each time
getBean() is invoked with the bean’s name. This could be bad if your bean uses a
limited resource such as database or network connections. At a minimum, you
may incur a small performance hit each time a new instance is created. Consider
these implications of setting singleton to false and avoid doing so unless it is
absolutely necessary.

 Configuring a bean as a prototype may be useful if you’d like to use the Spring
context as a factory for new instances of domain objects, such as Student or
Course objects. As prototype beans, you would be able to easily configure the
objects at the factory level (like any other bean), while still guaranteeing that the
factory would dispense a unique instance each time you ask for a domain object.

Initialization and destruction
When a bean is instantiated, it may be necessary to perform some initialization to
get it into a usable state. Likewise, when the bean is no longer needed and is
removed from the container, some cleanup may be in order. For that reason,
Spring can hook into two life-cycle methods of each of your beans to perform this
setup and teardown.

 Declaring a custom init-method in your bean’s definition specifies a method
that is to be called on the bean immediately upon instantiation. Similarly, a cus-
tom destroy-method specifies a method that is called just before a bean is
removed from the container:

A typical example of this would be a connection pooling bean:
public class MyConnectionPool {
…
 public void initialize() {

58 CHAPTER 2
Wiring beans

 // initialize connection pool
 }

 public void close() {
 // release connections
 }
…
}

The bean definition would appear as follows:

<bean id="connectionPool"
 class="com.springinaction.chapter02.MyConnectionPool"
 init-method="initialize" destroy-method="close"/>

Defined in this way, the initialize() method will be called immediately after
MyConnectionPool is instantiated, allowing it the opportunity to initialize the
pool. Just before the bean is removed from the container and discarded, the
close() method will release the database connections.

 Spring also provides two interfaces that perform the same functionality: Ini-
tializingBean and DisposableBean. The InitializingBean interface provides
one method, afterPropertiesSet(), that will be called once all of a bean’s prop-
erties have been set. Similarly, DisposableBean’s one method, destroy(), will be
called when the bean is removed from the container.

 The one benefit of this approach is that the Spring container automatically
detects beans that implement these interfaces and invokes their methods without
any configuration on your part. However, by implementing these interfaces, you
tie your beans to Spring’s API. Because of this, you should rely on the init-method
and destroy-method bean definitions to initialize and destroy your beans when-
ever you can. The only scenario where you might favor Spring’s interfaces is when
you are developing a framework bean that is to be used specifically within
Spring’s container.

 Now you’ve seen how to configure beans individually within the Spring con-
tainer. But to paraphrase John Donne, no bean is an island. For a bean to be of any
use in an application, it will have to get to know other beans and gain some iden-
tity. Let’s see how to set bean properties in Spring, starting with setter injection.

2.2.3 Injecting dependencies via setter methods

Setter injection is not something you need to get every winter to keep from get-

ting the flu. Instead, it is a technique for populating a bean’s properties based on
standard naming conventions. The JavaBean specification formalized the already
well-practiced idiom of having matching “set” and “get” methods that are used to

Basic wiring 59

set and retrieve a bean property’s value. For instance, a maxStudents property may
have the following getter and setter methods:

public void setMaxStudents(int maxStudents) {
 this.maxStudents = maxStudents;
}

pubic int getMaxStudents() {
 return maxStudents;
}

Since bean properties have these methods, why not let Spring use them to config-
ure the bean? Setter injection does just that, and the <property> subelement of
<bean> is the means to inject into a bean’s properties through their setter meth-
ods. Within the <property> element, you can define what property you are con-
figuring and what value you are injecting into this property. And as you will see,
you are able to inject just about anything, from primitive types to collections to
even other beans within your application.

Simple bean configuration
It’s quite common for a bean to have properties that are of simple types like int
and String. In fact, in the Spring Training application we have a few beans that
have such properties. Using the <value> subelement of <property> you can set
properties that are of primitive types, such as int or float, or are typed as
java.lang.String in the following way:

For example, the courseService bean can be configured to limit the number of stu-
dents enrolled in a course via its maxStudents property. To limit the number of
students enrolled in any course to no more than 30, change the definition of the
courseService bean to the following:

<bean id="courseService" ...>

 <property name="maxStudents">
 <value>30</value>
 </property>
</bean>

60 CHAPTER 2
Wiring beans

Here you are setting an int property, but you could set any primitive or String
property in the same way. Spring will automatically determine the type of the
property being set and convert the value appropriately.

 At this point you know how to inject simple properties into your beans. But
what about properties that are of more complex types, such as other objects? Let’s
see how you can play matchmaker and introduce your beans to each other.

Referencing other beans
Believe it or not, socializing your beans doesn’t involve sending them on blind
dates with your single bean friends or to bean single bars (you just never know
who a bean will hook up with there). Instead, beans get acquainted within your
application in the same way they are defined—in the container’s XML file.

 Just as we did previously, we use the <property> element to set properties that
reference other beans. The <ref> subelement of <property> lets us do just that:

For example, recall that the CourseServiceImpl class uses a reference to a Student-
Service bean when ensuring that a student has met the prerequisites for a course.
This reference is wired through the setStudentService() method on Course-
ServiceImpl and is declared in XML by changing the courseService bean defini-
tion to

<bean id="courseService"
 class="com.springinaction.service.training.CourseServiceImpl">
 <property name="studentService">
 <ref bean="studentService"/>
 </property>
</bean>

The container gives the courseService bean a StudentService bean (through
setStudentService()), thereby freeing CourseServiceImpl from having to look up
a StudentService bean on its own.

Basic wiring 61

Inner beans
Another lesser-used means of wiring bean references is to embed a <bean> ele-
ment directly in the <property> element. For example, the studentService prop-
erty of the courseService bean could be wired as follows:

<bean id="courseService"
 class="com.springinaction.service.training.CourseServiceImpl">
 <property name="studentService">
 <bean
 class="com.springinaction.service.training.StudentServiceImpl"/>
 </property>
</bean>

The drawback of wiring a bean reference in this manner is that you can’t reuse the
instance of StudentServiceImpl anywhere else—it is an instance created specifi-
cally for use by the courseService bean. You may also find that using inner-bean
definitions impacts the readability of the XML. On the other hand, this could be
beneficial if we don’t want an actual bean instance to be accessible without a wrap-
per bean. For example, if we are creating an AOP proxy, we may not want the tar-
get bean to be accessible in our BeanFactory. In this case, configuring the proxy’s
target using an inner bean would achieve this goal.

 Now let’s take a look at the case where we need to inject not just one object, but
a collection of objects.

Wiring collections
What if you have a property that is a List of values? Or a Set of bean references?
No problem. Spring supports many types of collections as bean properties, as
shown in table 2.1.

Wiring collections isn’t much different than wiring singular properties. Instead of

Table 2.1 Collections supported by Spring’s wiring

XML Type

<list> java.awt.List, arrays

<set> java.awt.Set

<map> java.awt.Map

<props> java.awt.Properties
using <value> or <ref> elements, use one of the elements from table 2.1.

62 CHAPTER 2
Wiring beans

Wiring lists and arrays
Whether you have an array property or a property that’s of the type
java.util.List, you will use the <list> element to wire the property in the wiring
XML file:

In chapter 4, you’ll see how to use Hibernate to persist the objects in the Spring
training application. But as a demonstration of how to wire List properties using
<list>, we’ll give you a sneak peek now. When using Hibernate with Spring,
you’ll wire a LocalSessionFactoryBean into the container. The LocalSession-
FactoryBean has a mappingResources property that takes a List of Strings con-
taining the names of Hibernate mapping files. Here’s a snippet of XML that we’ll
introduce to the bean wiring file when we get around to talking about Hibernate:

<bean id="sessionFactory" class=
 "org.springframework.orm.hibernate.LocalSessionFactoryBean">
 <property name="mappingResources">
 <list>
 <value>/com/springinaction/training/model/Course.hbm.xml</value>
 <value>/com/springinaction/training/model/Student.hbm.xml</value>
 </list>
 </property>
…
</bean>

Although the previous snippet wires a List of String values, you are not limited
to using only <value>s as entries in a <list>. You may use any element that is
valid when wiring a singular property, including <value>, <ref>, or even another
collection such as <list>. The only limitation is in what your bean’s expectations
are; you can’t wire in a List of Foos when your bean is expecting a List of Bars.

Wiring sets
Lists are great, but what if your bean has a java.util.Set property to guarantee
uniqueness in the collection? That’s what the <set> element is for:

Basic wiring 63

Notice that you use <set> exactly the way you would use <list>. The only differ-
ence is in how it is wired to a bean property. Where <list> wires values to a
java.util.List or an array, <set> wires values to a java.util.Set.

Wiring maps
You can wire java.util.Map collections in Spring using the <map> element. Map
collections are somewhat different than Lists and Sets. Each entry in a Map is
made up of a key and a value defined by the <entry> element:

The value of a map <entry>, just as with <list> and <set>, can be any valid prop-
erty element. Again, this includes <value>, <ref>, <list>, or even another <map>.

 When wiring an <entry>, notice that the key attribute will also be a String.
This is a slight limitation over the full functionality of java.util.Map, which
allows any object to be the key of a map entry. However, this limitation doesn’t
often present a problem, as Maps are typically keyed with Strings anyway.

Wiring properties
A java.util.Properties collection is the final type of collection that can be wired
in Spring. It is wired with the <props> element. Each element of a properties col-
lection is wired with the <prop> element.
 In many ways, <props> works similarly to <map>. The big difference is that the
value of a <prop> entry is always a String, so there is no need to use the <value>
element to differentiate between String values and non-String values:

64 CHAPTER 2
Wiring beans

You’ll use <props> several places in Spring, including when you create URL map-
pings within Spring’s Model/View/Controller (MVC) framework. We’ll talk more
about the details of URL mappings in chapter 8. But for now, here’s an example
showing how the <props> element is used to declare URL mappings:

<property name="mappings">
 <props>
 <prop key="/viewCourseDetails.htm">viewCourseController</prop>
 </props>
</property>

Setting null values
So far we have talked about configuring the properties of our beans with primi-
tive types, collections, or other beans within our application. But what if in order
to satisfy a requirement you need to explicitly set a property to null? This is really
just another kind of wiring, only in this case we are wiring null instead of a value
or bean.

 To set a property to null, you simply use the <null/> element. For example, to
set a foo property to null, you’d use this:

<property name="foo"><null/><property>

Why would you ever need to do this? If you do not explicitly wire a property in
Spring, you may assume that the property is left null. But that’s not always true.
For one thing, the bean itself may set the property to some default value. Or, if
you’re using autowiring, the property may be implicitly wired. In either case, you
may need to use <null/> to explicitly set the property to null.

An alternative to setter injection
Setter injection is a straightforward way to configure and wire bean properties.
But one shortcoming of setter injection is that assumes that all mutable proper-

ties are available via a setter method. You may not want all of your beans to
behave this way. For one thing, when this type of bean is instantiated, none of its
properties have been set and it could possibly be in an invalid state. Second, you

Basic wiring 65

may want certain properties to be set just once—when the bean is created—and
become immutable after that point. This is complicated, if not impossible, when
exposing all properties through setters.

 An alternative is to design your beans where some properties are set via con-
structors. This is a particularly good design if some properties are required and
immutable, such as a DAO’s DataSource. So if you choose to design some of your
beans this way or are working with beans that are already designed this way, you
still need a way to configure these objects through Spring. You’re in luck.

 Spring does offer another form of dependency injection: constructor injec-
tion. Let’s see how to use constructor injection to set the minimal properties for
a bean.

2.2.4 Injecting dependencies via constructor

In Java, a class can have one or more constructors, each taking a unique set of
arguments. With that in mind, you can program your bean classes with con-
structors that take enough arguments to fully define the bean at instantiation.
Using constructors this way, it is impossible to create a bean without it being
ready to use.

 Whereas the shortcoming of setter injection is that it is not clear which prop-
erties are required and which are optional, constructor injection’s main strength
is in the strong dependency contract imposed by constructors. That is, construc-
tors make it virtually impossible to instantiate a bean that is not fully defined and
ready to use.

 With setter injection, we defined the property we were injecting with the
<property> subelement. Constructor injection is similar, except in this case you’ll
use the <constructor-arg> subelement of <bean> to specify arguments to pass to a
bean’s constructor at instantiation. One difference between these two is that the
<constructor-arg> does not contain a name attribute that the <property> subele-
ment did (we will discuss why in a moment). An example of constructor injection
configuration is demonstrated here:

66 CHAPTER 2
Wiring beans

Returning to our Spring Training application, both CourseServiceImpl and Stu-
dentServiceImpl require references to a DAO object (CourseDaoImpl and Student-
ServiceImpl, respectively). Because these service beans are useless without their
DAO objects, each has a constructor that sets the DAO properties at bean creation
time. To set the DAO properties on the courseService and studentService beans,
use the following code:

<bean id="studentService"
 class="com.springinaction.training.service.StudentServiceImpl">
 <constructor-arg>
 <ref bean="studentDao"/>
 </constructor-arg>
</bean>

<bean id="courseService"
 class="com.springinaction.training.service.CourseServiceImpl">
 <constructor-arg>
 <ref bean="courseDao"/>
 </constructor-arg>
</bean>

Notice that <constructor-arg> can take a <ref> element just like <property> does.
In fact, you can use any of the same subelements you used with <property> in the
same way when setting constructor arguments with <constructor-arg>.

Handling ambiguous constructor arguments
Single-argument constructors are easy to deal with. But what if your constructor
has multiple arguments? Worse, what if the arguments are all the same type? How
can you specify which values go to which arguments?

 For example, what if your bean’s constructor takes a String argument and an
java.net.URL argument?

public class Foo {
 public Foo(String arg1, java.net.URL arg2) {
…
 }
}

Both the java.net.URL and String types can be converted from the <value> ele-
ment.1 So which one will be sent as arg1 and which will be sent as arg2?
1 We’ll show you how Spring converts Strings to URLs when we talk about PropertyEditors in
section 2.4.3.

Basic wiring 67

 At first thought, this may seem to be a silly question. You may be thinking that
the argument that looks like a URL will be sent as arg2. But suppose your bean is
wired like this:

<bean id="foo"
 class="com.springinaction.Foo">
 <constructor-arg>
 <value>http://www.manning.com</value>
 </constructor-arg>
 <constructor-arg>
 <value>http://www.springinaction.com</value>
 </constructor-arg>
</bean>

Hmmm. Both <constructor-arg> elements have values that look like URLs. Okay,
so maybe Spring will wire the arguments in the order that they appear—http://

www.manning.com will be wired to arg1 and http://www.springinaction.com will
be wired to arg2. Is that how it works?

 Good guess, but that’s not how it works. Spring will not attempt to guess its
way through your constructor arguments. Instead, it will throw an org.spring-
framework.beans.factory.UnsatisfiedDependencyException, indicating that there
is an ambiguity in the constructor arguments.

 Fortunately, there are two ways you can deal with ambiguities among construc-
tor arguments: by index and by type.

 The <constructor-arg> element has an optional index attribute that specifies
the ordering of the constructor arguments. For example, to send http://
www.manning.com as the URL argument and http://www.springinaction.com as the
String argument, simply add the index attribute like this (index is zero-based):

<bean id="foo"
 class="com.springinaction.Foo">
 <constructor-arg index="1">
 <value>http://www.manning.com</value>
 </constructor-arg>
 <constructor-arg index="0">
 <value>http://www.springinaction.com</value>
 </constructor-arg>
</bean>

The other way to deal with <constructor-arg> ambiguity is to use the type
attribute. The type attribute lets you specify exactly what type each <constructor-

arg> is supposed to be so that Spring can make an informed decision as to which
argument goes where. For example:

68 CHAPTER 2
Wiring beans

<bean id="foo"
 class="com.springinaction.Foo">
 <constructor-arg type="java.lang.String">
 <value>http://www.manning.com</value>
 </constructor-arg>
 <constructor-arg type="java.net.URL">
 <value>http://www.springinaction.com</value>
 </constructor-arg>
</bean>

Wired this way, http://www.habuma.com will be the URL argument and http://
www.manning.com will be the String argument.

 Which should you use—index or type? In the example above, it didn’t matter,
because each argument had a distinct type. But what if both arguments were
Strings? If that’s the case, the type attribute won’t help you much and you must
opt for the more specific index attribute.

How to choose: Constructor or setter?

There are certain things that most people can agree upon: The fact that the sky
is blue, that Michael Jordan is the greatest player to touch a basketball, and
that Star Trek V should have never happened. And then there are those things that
stir up controversy, such as politics, religion, and the eternal “tastes great/less
filling” debates.

 Likewise, the choice between constructor injection and setter injection stirs up
as much discourse as the arguments surrounding creamy versus crunchy peanut
butter. Both have their merits and their weaknesses. Which should you choose?

 Here are some arguments in favor of constructor injection:

■ As we stated before, constructor injection enforces a strong dependency
contract. In short, a bean cannot be instantiated without being given all of
its dependencies. It is perfectly valid and ready to use upon instantiation.
Of course, this assumes that the bean’s constructor has all of the bean’s
dependencies in its parameter list.

■ Because all of the bean’s dependencies are set through its constructor,
there’s no need for superfluous setter methods. This helps keep the lines
of code at a minimum.

■ By only allowing properties to be set through the constructor, you are, in

effect, making those properties immutable.

Autowiring 69

But there are also many arguments against constructor injection (and thus, in
favor of setter injection):

■ If a bean has several dependencies, the constructor’s parameter list can be
quite lengthy.

■ If there are several ways to construct a valid object, it can be hard to come
up with unique constructors since constructor signatures vary only by the
number and type of parameters.

■ If a constructor takes two or more parameters of the same type, it may be
difficult to determine what each parameter’s purpose is.

■ Constructor injection does not lend itself readily to inheritance. A bean’s
constructor will have to pass parameters to super() in order to set private
properties in the parent object.

Our approach to choosing between setter injection and constructor injection, for
lack of a hard and fast rule, will be to do what works best in each situation. Quite
simply, choose constructor injection when constructor injection makes sense and
choose setter injection when setter injection makes sense. A good yardstick to go
by is the clarity of your Spring configuration file. For instance, if you are creating
a bean that has only one mandatory property (such as a DAO object as its Data-
Source), constructor injection would probably be a good choice. On the other
hand, if you have a bean that has multiple, optional properties (such as the Data-
Source itself), setter injection would be more appropriate.

 To put another way, sometimes you feel like a nut…sometimes you don’t. Do
what works for you.

 Fortunately, Spring doesn’t force you into any specific choice regarding
dependency injection. You may inject a bean using either form of dependency
injection. In fact, you are free to mix-‘n’-match setter injection and constructor
injection in the same context definition file—or even in the same bean.

 Now that you’ve seen the basics of wiring beans in a Spring container using
Spring’s context definition file, let’s look at ways to customize how Spring per-
forms the wiring.

2.3 Autowiring

So far you’ve seen how to wire all of your bean’s properties explicitly using the

<property> element. Alternatively, you can have Spring wire them automatically
by setting the autowire property on each <bean> that you want autowired:

70 CHAPTER 2
Wiring beans

There are four types of autowiring:

■ byName—Attempts to find a bean in the container whose name (or ID) is
the same as the name of the property being wired. If a matching bean is
not found, then the property will remain unwired.

■ byType—Attempts to find a single bean in the container whose type
matches the type of the property being wired. If no matching bean is
found, then the property will not be wired. If more than one bean matches,
an org.springrframework.beans.factory.UnsatisfiedDependencyExcpetion
will be thrown.

■ constructor—Tries to match up one or more beans in the container with the
parameters of one of the constructors of the bean being wired. In the event
of ambiguous beans or ambiguous constructors, an org.springframe-

work.beans.factory.UnsatisfiedDependencyException will be thrown.
■ autodetect—Attempts to autowire by constructor first and then using

byType. Ambiguity is handled the same way as with constructor and
byType wiring.

For example, the declaration of the courseService bean when explicitly wired
looks like this:

<bean id="courseService"
 class="com.springinaction.training.service.CourseServiceImpl">
 <property name="courseDao">
 <ref bean="courseDao"/>
 </property>
 <property name="studentService">
 <ref bean="studentService"/>
 </property>
</bean>

But when autowiring (by name), it looks like this:
<bean id="courseService"
 class="com.springinaction.training.service.CourseServiceImpl"
 autowire="byName"/>

Autowiring 71

By using byName autowiring, you are telling the container to consider all proper-
ties of the CourseServiceImpl and look for beans declared with the same name as
the property. In this case, two properties, courseDao and studentService, are eli-
gible for autowiring through setter injection. If beans are declared in the wiring
file with the names courseDao and studentService, those beans will be wired to
courseDao and studentService, respectively.

 Autowiring using byType works in a similar way to byName, except that instead of
considering a property’s name, the property’s type is examined. For example, if the
courseService bean’s autowire is set to byType instead of byName, the container will
search itself for a bean whose type is com.springinaction.training.CourseDao and
another bean whose type is com.springinaction.training.StudentService.

 For an example of autowiring by constructor consider the studentService bean:

<bean id="studentService"
 class="com.springinaction.training.service.StudentServiceImpl"
 autowire="constructor"/>

The StudentServiceImpl class has a single-argument constructor that takes a
StudentDao as an argument. If the container can find a bean whose type is
com.springinaction.training.StudentDao, it will construct StudentServiceImpl
by passing that bean to the constructor.

 As you recall, StudentServiceImpl also has a setStudentDao() method that can
be used to set the studentDao property. So, in addition to constructor autowiring,
you could also apply byType or byName. Or if you’d like the flexibility of letting the
container decide, you could use autodetect:

<bean id="studentService"
 class="com.springinaction.training.service.StudentServiceImpl"
 autowire="autodetect"/>

By setting autowire to autodetect, you instruct the Spring container to attempt to
autowire by constructor first. If it can’t find a suitable match between constructor
arguments and beans, it will then try to autowire using byType.

2.3.1 Handling ambiguities of autowiring

When autowiring using byType or constructor, it’s possible that the container
may find two or more beans whose type matches the property’s type or the types
of the constructor arguments. What happens when there are ambiguous beans

suitable for autowiring?

 Unfortunately, Spring isn’t capable of sorting out ambiguities and chooses to
throw an exception rather than guess which bean you meant to wire in. If you

72 CHAPTER 2
Wiring beans

encounter such ambiguities when autowiring, the best solution is often to simply
not autowire the bean.

2.3.2 Mixing auto and explicit wiring

Just because you choose to autowire a bean, that doesn’t mean you can’t explicitly
wire some properties. You can still use the <property> element on any property as
if you hadn’t set autowire.

 For example, to explicitly wire the courseDao property of CourseServiceImpl,
but still autowire the studentService property, you’d use this code:

<bean id="courseService"
 class="com.springinaction.training.service.CourseServiceImpl"
 autowire="byName">
 <property name="courseDao">
 <ref bean="someOtherCourseDao"/>
 </property>
</bean>

Mixing automatic and explicit wiring is also a great way to deal with ambiguous
autowiring that may occur when autowiring using byType.

2.3.3 Autowiring by default

By default, beans will not be autowired unless you set the autowire attribute.
However, you can set a default autowiring for all beans within the Spring config-
uration wiring file by setting default-autowire on the root <beans> element:

<beans default-autowire="byName">

Set this way, all beans will be autowired using byName unless specified otherwise.

2.3.4 To autowire or not to autowire

Although autowiring seems to be a powerful way to cut down on the amount of
manual configuration required when writing the bean wiring file, it may lead to
some problems.

 For example, suppose that the studentService bean is set to be autowired
using byName. As a result, its studentDao property will automatically be set to the
bean in the container whose name is studentDao. Let’s say that you decide that
you want to refactor the studentDao property, renaming it as studentData. After
refactoring, the container will try to autowire by looking for a bean named

studentData. Unless you have changed the bean XML file, it won’t find a bean by
that name and will leave the property unwired. When the studentService bean
tries to use the studentData property, you’ll get a NullPointerException.

Working with Spring’s special beans 73

 Worse still, what if there is a bean named studentData but it isn’t the bean you
want wired to the studentData property? Depending on the type of the student-
Data bean, Spring may quietly wire in the unwanted bean, resulting in unex-
pected application behavior.

 Autowiring is a powerful tool feature. But, as you may have heard, with great
power comes great responsibility. If you choose to autowire, do so with caution.

 Because autowiring hides so much of what is going on and because we want
our examples to be abundantly clear, most of the examples in this book will not
use autowiring. We’ll leave it up to you whether or not you will autowire in your
own applications.

 You now know how to use Spring to wire your beans. But these aren’t the only
beans you can put to use in the container. Spring also comes with its own beans
that can be wired into the container to do some additional work for you.

2.4 Working with Spring’s special beans

Most beans configured in a Spring container are treated equally. Spring config-
ures them, wires them together, and makes them available for use within an appli-
cation. Nothing special.

 But some beans have a higher purpose. By implementing certain interfaces,
you can cause Spring to treat beans as being special—as being part of the Spring
framework itself. By taking advantage of these special beans, you can configure
beans that

■ Become involved in the bean’s and the bean factory’s life cycles by postpro-
cessing bean configuration

■ Load configuration information from external property files
■ Alter Spring’s dependency injection to automatically convert String values

to another type when setting bean properties—for example, being able to
inject a String value into a java.util.Date field and have the date auto-
matically converted

■ Load textual messages from property files, including internationalized
messages

■ Listen for and respond to application events that are published by other
beans and by the Spring container itself
■ Are aware of their identity within the Spring container

74 CHAPTER 2
Wiring beans

In some cases, these special beans already have useful implementations that come
packaged with Spring. In other cases, you’ll probably want to implement the
interfaces yourself.

 Let’s start the exploration of Spring’s special beans by looking at beans that
perform postprocessing of other beans and of the bean factory itself.

2.4.1 Postprocessing beans

Earlier in this chapter, you learned how to define beans within the Spring con-
tainer and how to wire them together. For the most part, you have no reason to
expect beans to be wired in any way different than how you define them in the
bean definition XML file. The XML file is perceived as the source of truth regard-
ing how your application’s objects are configured.

 But as you saw in figures 2.1 and 2.2, Spring offers two opportunities for you
to cut into a bean’s life cycle and review or alter its configuration. This is called
postprocessing. From the name, you probably deduced that this processing done
after some event has occurred. The event this postprocessing follows is the instan-
tiation and configuring of a bean. The BeanPostProcessor interface gives you two
opportunities to alter a bean after it has been created and wired:

public interface BeanPostProcessor {
 Object postProcessBeforeInitialization(
 Object bean, String name) throws BeansException;

 Object postProcessAfterInitialization(
 Object bean, String name) throws BeansException;
}

The postProcessBeforeInitialization() method is called immediately prior to
bean initialization (the call to afterPropertiesSet() and the bean’s custom init-
method). Likewise, the postProcessAfterInitialization() method is called
immediately after initialization.

Writing a bean post processor
For example, suppose that you wanted to alter all String properties of your appli-
cation beans to translate them into Elmer Fudd-speak. The Fuddifier class in list-
ing 2.5 is a BeanPostProcessor that does just that.

Listing 2.5 Fudd-ify your String properties with this BeanPostProcessor.
public class Fuddifier implements BeanPostProcessor {
 public Object postProcessAfterInitialization(
 Object bean, String name) throws BeansException {

Working with Spring’s special beans 75

 Field[] fields = bean.getClass().getDeclaredFields();

 try {
 for(int i=0; i < fields.length; i++) {
 if(fields[i].getType().equals(
 java.lang.String.class)) {
 fields[i].setAccessible(true);
 String original = (String) fields[i].get(bean);
 fields[i].set(bean, fuddify(original));
 }
 }
 } catch (IllegalAccessException e) {
 e.printStackTrace();
 }

 return bean;
 }

 private String fuddify(String orig) {
 if(orig == null) return orig;
 return orig.replaceAll("(r|l)", "w")
 .replaceAll(" (R|L) ", "W");
 }

 public Object postProcessBeforeInitialization(
 Object bean, String name) throws BeansException {
 return bean;
 }
}

The postProcessAfterInitialization() method cycles through all of the bean’s
properties, looking for those that are of type java.lang.String. For each String
property, it passes it off to the fuddify() method, which translates the String into
Fudd-speak. Finally, the property is changed to the fudd-ified text. (You’ll also
notice a call to each property’s setAccessible() method to get around the private
visibilityof a property. We realize that this breaks encapsulation, but how else
could we pull this off?)

 The postProcessBeforeInitialization() method is left purposefully unexcit-
ing; it simply returns the bean unaltered. Actually, the fudd-ification process
could have occurred just as well in this method.

 Now that we have a Fudd-ifying BeanPostProcessor, let’s look at how to tell the
container to apply it to all beans.

76 CHAPTER 2
Wiring beans

Registering bean post processors
If your application is running within a bean factory, you’ll need to programmatically
register each BeanPostProcessor using the factory’s addBeanPostProcessor() method:

BeanPostProcessor fuddifier = new Fuddifier();
factory.addBeanPostProcessor(fuddifier);

If you’re using an application context, you’ll only need to register the post proces-
sor as a bean within the context.

<bean id=" fuddifier"
 class="com.springinaction.chapter02.Fuddifier"/>

The container will recognize the fuddifier bean as a BeanPostProcessor and call
its postprocessing methods before and after each bean is initialized.

 As a result of the fuddifier bean, all String properties of all beans will be
Fudd-ified. For example, suppose you had the following bean defined in XML:

<bean id="bugs" class="com.springinaction.chapter02.Rabbit">
 <property name="description">
 <value>That rascally rabbit!</value>
 </property>
</bean>

When the “fuddifier” processor is finished, the description property will hold
“That wascawwy wabbit!”

Spring’s own bean postprocessors
The Spring framework itself uses several implementations of BeanPostProcessor
under the covers. For example, ApplicationContextAwareProcessor is a Bean-
PostProcessor that sets the application context on beans that implement the
ApplicationContextAware interface (see section 2.4.6). You do not need to regis-
ter ApplicationContextAwareProcessor yourself. It is preregistered by the appli-
cation context itself.

 In the next chapter, you’ll learn of another implementation of BeanPost-
Processor. You’ll also learn how to automatically apply aspects to application beans
using DefaultAdvisorAutoProxyCreator, which is a BeanPostProcessor that cre-
ates AOP proxies based on all candidate advisors in the container.

2.4.2 Postprocessing the bean factory
While a BeanPostProcessor performs postprocessing on a bean after it has
been loaded, a BeanFactoryPostProcessor performs postprocessing on a bean
factory after the bean factory has loaded its bean definitions but before any of

Working with Spring’s special beans 77

the beans have been instantiated. The BeanFactoryPostProcessor interface is
defined as follows:

public interface BeanFactoryPostProcessor {
 public void postProcessBeanFactory(
 ConfigurableListableBeanFactory beanFactory)
 throws BeansException;
}

The postProcessBeanFactory() method is called by the Spring container after all
bean definitions have been loaded but before any beans are instantiated (includ-
ing BeanPostProcessor beans).

 For example, the BeanFactoryPostProcessor implementation in listing 2.6
gives a whole new meaning to the term “bean counter.” BeanCounter is a Bean-
FactoryPostProcessor that simply logs the number of bean definitions that have
been loaded into the bean factory.

public class BeanCounter implements BeanFactoryPostProcessor {
 private Logger LOGGER = Logger.getLogger(BeanCounter.class);

 public void postProcessBeanFactory(
 ConfigurableListableBeanFactory factory)
 throws BeansException {

 LOGGER.debug("BEAN COUNT: " +
 factory.getBeanDefinitionCount());
 }
}

If you’re using an application context container, you won’t need to do anything to
register a BeanFactoryPostProcessor as a postprocessor in Spring other than reg-
ister it as a regular bean:

<bean id="beanCounter"
 class="com.springinaction.chapter02.BeanCounter"/>

When the container sees that beanCounter is a BeanFactoryPostProcessor, it will
automatically register it as a bean factory postprocessor. You cannot use Bean-
FactoryPostProcessors with bean factory containers.

 BeanCounter is a naïve use of BeanFactoryPostProcessor. To find more mean-

Listing 2.6 Creating a BeanFactoryPostProcessor to count how many beans are
created within the factory
ingful examples of BeanFactoryPostProcessor, we have to look no further than
the Spring framework itself. Two very useful implementations of BeanFactory-
PostProcessor are PropertyPlaceholderConfigurer and CustomEditorConfigurer.

78 CHAPTER 2
Wiring beans

PropertyPlaceholderConfigurer loads properties from one or more external
property files and uses those properties to fill in placeholder variables in the bean
wiring XML file. CustomEditorConfigurer lets you register custom implementa-
tions of java.beans.PropertyEditor to translate property wired values to other
property types.

 Let’s take a look at how you can use the PropertyPlaceholderConfigurer
implementation of BeanFactoryPostProcessor.

2.4.3 Externalizing the configuration

For the most part, it is possible to configure your entire application in a single
bean wiring file. But sometimes you may find it beneficial to extract certain pieces
of that configuration into a separate property file. For example, a configuration
concern that is common to many applications is configuring a data source. In
Spring, you could configure a data source with the following XML in the bean wir-
ing file:

<bean id="dataSource" class=
 "org.springframework.jdbc.datasource.DriverManagerDataSource">
 <property name="url">
 <valuejdbc:hsqldb:Training</value>
 </property>
 <property name="driverClassName">
 <value>org.hsqldb.jdbcDriver</value>
 </property>
 <property name="username">
 <value>appUser</value>
 </property>
 <property name="password">
 <value>password</value>
 </property>
</bean>

Configuring the data source directly in the bean wiring file may not be appropri-
ate. The database specifics are a deployment detail. Conversely, the purpose of
the bean wiring file is mainly oriented toward defining how components within
your application are put together. That’s not to say that you cannot configure
your application components within the bean wiring file. In fact, when the con-
figuration is application-specific (as opposed to deployment-specific) it makes
perfect sense to configure components in the bean wiring file. But deployment
details should be separated.
 Fortunately, externalizing properties in Spring is easy if you are using an
ApplicationContext as your Spring container. You use Spring’s PropertyPlace-
holderConfigurer to tell Spring to load certain configuration from an external

Working with Spring’s special beans 79

property file. To enable this feature, configure the following bean in your bean
wiring file:

<bean id="propertyConfigurer" class="org.springframework.beans.
 factory.config.PropertyPlaceholderConfigurer">
 <property name="location">
 <value>jdbc.properties</value>
 </property>
</bean>

The location property tells Spring where to find the property file. In this case,
the jdbc.properties file contains the following JDBC information:

database.url=jdbc:hsqldb:Training
database.driver=org.hsqldb.jdbcDriver
database.user=appUser
database.password=password

The location property allows you to work with a single property file. If you want
to break down your configuration into multiple property files, use Property-
PlaceholderConfigurer’s locations property to set a List of property files:

<bean id="propertyConfigurer" class="org.springframework.beans.
 factory.config.PropertyPlaceholderConfigurer">
 <property name="locations">
 <list>
 <value>jdbc.properties</value>
 <value>security.properties</value>
 <value>application.properties</value>
 </list>
 </property>
</bean>

Now you are able to replace the hard-coded configuration in the bean wiring file
with placeholder variables. Syntactically, the placeholder variables take the form
${variable}, resembling Ant properties or the JavaServer Pages (JSP) expres-
sion language.

 Applying the placeholder variables to the data source configuration yields
the following:

<bean id="dataSource" class="org.springframework.
 jdbc.datasource.DriverManagerDataSource">
 <property name="url">
 <value>${database.url}</value>
 </property>
 <property name="driverClassName">

➥

➥

➥

 <value>${database.driver}</value>
 </property>
 <property name="username">

80 CHAPTER 2
Wiring beans

 <value>${database.user}</value>
 </property>
 <property name="password">
 <value>${database.password}</value>
 </property>
</bean>

The placeholder variables will be replaced with properties from jdbc.properties
when the context is loaded.

2.4.4 Customizing property editors

In section 2.2.4, you saw that it is possible to wire a String value to a property
whose type is java.net.URL. Did you wonder how that works?

 Actually, the magic behind this trick isn’t something Spring provides, but
rather comes from a little-known feature of the original JavaBeans API. The
java.beans.PropertyEditor interface provides a means to customize how String
values are mapped to non-String types. There is a convenience implementation
of this interface—java.beans.PropertyEditorSupport—that has two methods of
interest to us:

■ getAsText()returns the String representation of a property’s value.
■ setAsText(String value) sets a bean property value from the String value

passed in.

If an attempt is made to set a non-String property to a String value, the setAs-
Text() method is called to perform the conversion. Likewise, the getAsText()
method is called to return a textual representation of the property’s value.

 Spring comes with several custom editors based on PropertyEditorSupport,
including org.springframework.beans.propertyeditors.URLEditor, which is the
custom editor used to convert Strings to and from java.net.URL objects.

 Some other custom editors that come with Spring include

■ ClassEditor—Sets a java.lang.Class property from a String value that
contain the fully qualified class name

■ CustomDateEditor—Sets a java.util.Date property from a String using a
custom java.text.DateFormat object

■ FileEditor—Sets a java.io.File property from a String value that con-
tains a file’s path
■ LocaleEditor—Sets a java.util.Locale property from a String value that
contains a textual representation of the locale (i.e., “en_US”)

Working with Spring’s special beans 81

■ StringArrayPropertyEditor—Converts a comma-delimited String to a
String array property

■ StringTrimmerEditor—Automatically trims String properties with an
option to convert empty String values to null

You can also write your own custom editor by extending the PropertyEditor-
Support class. For example, suppose that your application has a Contact bean that
conveniently carries contact information about the people in your organization.
Among other things, the Contact bean has a phoneNumber property that holds the
contact phone number:

public Contact {
 …
 private PhoneNumber phoneNumber;

 public void setPhoneNumber(PhoneNumber phoneNumber) {
 this.phoneNumber = phoneNumber;
 }
}

The phone property is of type PhoneNumber and is defined as follows:

public PhoneNumber {
 private String areaCode;
 private String prefix;
 private String number;

 public PhoneNumber() { }

 public PhoneNumber(String areaCode, String prefix,
 String number) {
 this.areaCode = areaCode;
 this.prefix = prefix;
 this.number = number;
 }
…
}

Using basic wiring techniques learned in section 2.2, you could wire a Phone-
Number object into the Contact bean’s phoneNumber property as follows:

<beans>
 <bean id="infoPhone"
 class="com.springinaction.chapter02.PhoneNumber">
 <constructor-arg index="0">

 <value>888</value>
 </constructor-arg>
 <constructor-arg index="1">
 <value>555</value>

82 CHAPTER 2
Wiring beans

 </constructor-arg>
 <constructor-arg index="2">
 <value>1212</value>
 </constructor-arg>
 </bean>
 <bean id="contact"
 class="com.springinaction.chapter02.Contact">
 <property name="phoneNumber">
 <ref bean="infoPhone"/>
 </property>
 </bean>
</beans>

Notice that you had to define a separate infoPhone bean to configure the Phone-
Number object and then wire it into the phoneNumber property of the Contact bean.

 But suppose you were to write a custom PhoneEditor like this:

public class PhoneEditor
 extends java.beans.PropertyEditorSupport {
 public void setAsText(String textValue) {
 String stripped = stripNonNumeric(textValue);

 String areaCode = stripped.substring(0,3);
 String prefix = stripped.substring(3,6);
 String number = stripped.substring(6);
 PhoneNumber phone = new PhoneNumber(areaCode, prefix, number);
 setValue(phone);
 }

 private String stripNonNumeric(String original) {
 StringBuffer allNumeric = new StringBuffer();

 for(int i=0; i<original.length(); i++) {
 char c = original.charAt(i);
 if(Character.isDigit(c)) {
 allNumeric.append(c);
 }
 }

 return allNumeric.toString();
 }
}

Now the only thing left is to get Spring to recognize your custom property editor
when wiring bean properties. For that, you’ll need to use Spring’s CustomEditor-
Configurer. CustomEditorConfigurer is a BeanFactoryPostProcessor that loads

custom editors into the BeanFactory by calling the registerCustomEditor()
method. (Optionally, you can call the registerCustomEditor() method in your
own code after you have an instance of the bean factory.)

Working with Spring’s special beans 83

 By adding the following piece of XML to the bean configuration file, you’ll tell
Spring to register the PhoneEditor as a custom editor:

<bean id="customEditorConfigurer" class="org.springframework.
 beans.factory.config.CustomEditorConfigurer">
 <property name="customEditors">
 <map>
 <entry key="com.springinaction.chapter02.Phone">
 <bean id="phoneEditor"
 class="com.springinaction.02.PhoneEditor">
 </bean>
 </entry>
 </map>
 </property>
</bean>

And you’ll now be able to configure the Contact object’s phoneNumber property
using a simple String value and without creating a separate Phone bean:

<bean id="contact"
 class="com.springinaction.chapter02.Contact">
 <property name="phoneNumber">
 <value>888-555-1212</value>
 </property>
</bean>

Note that many of the custom editors that come with Spring (such as URLEditor
and LocaleEditor) are already registered with the bean factory upon container
startup. You do not need to register them yourself using CustomEditorConfigurer.

2.4.5 Resolving text messages

Oftentimes you may not want to hard-code certain text that will be displayed to
the user of your application. This may be because the text is subject to change or
perhaps your application will be internationalized and you will display text in the
user’s native language.

 Java’s support for parameterization and internationalization (I18N)2 of mes-
sages enables you to define one or more properties files that contain the text that
is to be displayed in your application. There should always be a default message
file along with optional language-specific message files. For example, if the name
of your application’s message bundle is “trainingtext,” you may have the follow-
ing set of message property files:

➥

2 Internationalization is often referred to as “I18N” for short. It gets this name because there are 18
letters between the I and the N in “Internationalization.”

84 CHAPTER 2
Wiring beans

■ trainingtext.properties—Default messages when a locale cannot be deter-
mined or when a locale-specific properties file is not available

■ trainingtext_en_US.properties—Text for English-speaking users in the
United States

■ trainingtext_es_MX.properties—Text for Spanish-speaking users in Mexico
■ trainingtext_de_DE.properties—Text for German-speaking users in Germany

For example, both the default and English properties files may contain entries
such as

course=class
student=student
computer=computer

while the Spanish message file would look like this:
course=clase
student=estudiante
computer=computadora

Spring’s ApplicationContext supports parameterized messages by making them
available to the container through the MessageSource interface:

public interface MessageSource {
 public String getMessage(
 MessageSourceResolvable resolvable, Locale locale)
 throws NoSuchMessageException;
 public String getMessage(
 String code, Object[] args, Locale locale)
 throws NoSuchMessageException;
 public String getMessage(
 String code, Object[] args, String defaultMessage,
 Locale locale);
}

Spring comes with a ready-to-use implementation of MessageSource. Resource-
BundleMessageSource simply uses Java’s own java.util.ResourceBundle to
resolve messages. To use ResourceBundleMessageSource, add the following to the
bean wiring file:

<bean id="messageSource" class="org.springframework.
 context.support.ResourceBundleMessageSource">
 <property name="basename">
 <value>trainingtext</value>
 </property>

➥

</bean>

It is very important that this bean be named messageSource because the Applica-
tionContext will look for a bean specifically by that name when setting up its

Working with Spring’s special beans 85

internal message source. You’ll never need to inject the messageSource bean into
your application beans, but will instead access messages via ApplicationContext’s
own getMessage() methods. For example, to retrieve the message whose name is
computer, use this code:

Locale locale = … ; //determine locale
String text =
 context.getMessage("computer", new Object[0], locale);

You’ll likely be using parameterized messages in the context of a web application,
displaying the text on a web page. In that case, you’ll want to use Spring’s
<spring:message> JSP tag to retrieve messages and will not need to directly access
the ApplicationContext:

<spring:message code="computer"/>

But if you need your beans, not a JSP, to retrieve the messages, how can you write
them to access the ApplicationContext? Well, you’re going to have to wait a bit for
that. Or you can skip ahead to section 2.4.8 where we discuss making your beans
aware of their container.

 Right now, we are going to move on to examine the events that occur during
an application context’s life cycle, how to handle these events, and how to publish
our own events.

2.4.6 Listening for events

In the course of an application’s lifetime, the ApplicationContext will publish a
handful of events that tell interested listeners what’s going on. These events are
all subclasses of the abstract class org.springframework.context.Application-
Event. Three such application events are

■ ContextClosedEvent—Published when the application context is closed
■ ContextRefreshedEvent—Published when the application context is initial-

ized or refreshed
■ RequestHandledEvent—Published within a web application context when a

request is handled

For the most part, these events are published rather…uh…well, uneventfully.
Most beans will never know or care that they were published. But what if you want

to be notified of application events?

 If you want a bean to respond to application events, all you need to do is
implement the org.springframework.context.ApplicationListener interface.

86 CHAPTER 2
Wiring beans

This interface forces your bean to implement the onApplicationEvent() method,
which is responsible for reacting to the application event:

public class RefreshListener implements ApplicationListener {
 public void onApplicationEvent(ApplicationEvent event) {
…
 }
}

The only thing you need to do to tell Spring about an application event listener is
to simply register it as a bean within the context:

<bean id="refreshListener"
 class="com.springinaction.foo.RefreshListener"/>

When the container loads the bean within the application context, it will notice
that it implements ApplicationListener and will remember to call its onApplica-
tionEvent() method when an event is published.

2.4.7 Publishing events

While it may be handy for your beans to respond to events published by the con-
tainer itself, it’s also possible for your application to publish its own events. These
events are handled by implementations of ApplicationListener in the same way
that any events are handled.

 Imagine that you want to alert one or more application objects any time that a
student signs up for a course and, as a result, the course is full. Maybe you want to
fire off a routine to automatically schedule another course to handle the overflow.

 First, define a custom event, such as the one in listing 2.7.

public class CourseFullEvent extends ApplicationEvent {
 private Course course;

 public CourseFullEvent(Object source, Course course) {
 super(source);
 this.course = course;
 }

 public Course getCourse() {
 return course;
 }

Listing 2.7 A custom event indicating a course has reached capacity
}

Working with Spring’s special beans 87

Next you’ll need to publish the event. The ApplicationContext interface has a
publishEvent() method that enables you to publish ApplicationEvents. Any
ApplicationListener that is registered in the application context will receive the
event in a call to its onApplicationEvent() method:

ApplicationContext context = …;
Course course = …;
context.publishEvent(new CourseFullEvent(this, course));

Finally, you’ll need to make sure that the objects interested in handling the
CourseFullEvent implement the ApplicationListener interface as described
above. One thing to keep in mind is that these events are handled synchronously.
So, you want to take care that any events handled in this fashion are handled
quickly. Otherwise, you application’s performance could be negatively impacted.

 Unfortunately, in order to publish events, your beans will need to have access
to the ApplicationContext. This means that beans will have to be made aware of
the container that they’re running in. And that’s the next type of special bean
we’re going to talk about.

2.4.8 Making beans aware

Have you seen The Matrix? In the movie, humans have been unwittingly enslaved
by machines, living their everyday lives in a virtual world while their life essence
is being farmed to power the machines. Thomas Anderson, the main character, is
given a choice between taking a red pill and learning the truth of his existence or
taking a blue pill and continuing his life ignorant of the truth. He chooses the red
pill, becoming aware his real-world identity and the truth about the virtual world.

 For the most part, beans running in the Spring container are like the
humans in The Matrix. For these beans, ignorance is bliss. They don’t know (or
even need to know) their names or even that they are running within a Spring
container. This is usually a good thing because if a bean is aware of the con-
tainer, then it becomes coupled with Spring and may not be able to exist outside
of the container.

 But sometimes, beans need to know more. Sometimes they need to know the
truth who they are and where they are running. Sometimes they need to take the
red pill.

 The red pill, in the case of Spring beans, comes in the form of the Bean-

NameAware, BeanFactoryAware, and ApplicationContextAware interfaces. By imple-
menting these three interfaces, beans can be made aware of their name, their
BeanFactory, and their ApplicationContext, respectively.

88 CHAPTER 2
Wiring beans

 Be warned, however, that by implementing these interfaces, a bean becomes
coupled with Spring. And, depending on how your bean uses this knowledge, you
may not be able to use it outside of Spring.

Knowing who you are
The Spring container tells a bean what its name is through the BeanNameAware
interface. This interface has a single setBeanName() interface that takes a String
containing the bean’s name, which is set through either the id or the name
attribute of <bean> in the bean wiring file:

public interface BeanNameAware {
 void setBeanName(String name);
}

It may be useful for a bean to know its name for bookkeeping purposes. For
example, if a bean may have more than one instance within the application con-
text, it may be beneficial for that bean to identify itself by both name and type
when logging its actions.

 Within the Spring framework itself, BeanNameAware is used several times. One
notable use is with beans that perform scheduling. CronTriggerBean, for example,
implements BeanNameAware to set the name of its Quartz CronTrigger 3 job. The
following code snippet from CronTriggerBean illustrates this:

package org.springframework.scheduling.quartz;
public class CronTriggerBean extends CronTrigger
 implements …, BeanNameAware, … {
…
 private String beanName;
…
 public void setBeanName(String beanName) {
 this.beanName = beanName;
 }
…
 public void afterPropertiesSet() … {
 if (getName() == null){
 setBeanName(this.beanName);
 }
…
 }
…
}

3 The CronTriggerBean class allows you to schedule jobs within the Spring container using Quartz, an
open source scheduling system. We will cover Quartz in detail in chapter 7.

Working with Spring’s special beans 89

You don’t need to do anything special for a Spring container to call setBean-
Name() on a BeanNameAware class. When the bean is loaded, the container will see
that the bean implements BeanNameAware and will automatically call setBean-
Name(), passing the name of the bean as defined by either the id or the name
attribute of the <bean> element in the bean wiring XML file.

 Here CronTriggerBean extends CronTrigger. After the Spring context has set
all properties on the bean, the bean name is sent to setBeanName() (defined in
CronTrigger) to set the name of the scheduled job.

 This example showed you how to use BeanNameAware by showing how it is used
in Spring’s own scheduling support. We’ll talk more about scheduling in chapter 7.
For now, let’s see how a bean can be made aware of its own container.

Knowing where you live
As you’ve seen in this section, sometimes it’s helpful for a bean to be able to access
the application context. Perhaps your bean needs access to parameterized text
messages in a message source. Or maybe it needs to be able to publish application
events for application event listeners to respond to. Whatever the case, your bean
should be aware of the container in which it lives.

 Spring’s ApplicationContextAware and BeanFactoryAware interfaces enable a
bean to be aware of its container. These interfaces declare a setApplication-
Context() method and a setBeanFactory() method, respectively. The Spring
container will detect whether any of your beans implement either of these inter-
faces and provide the BeanFactory or ApplicationContext.

 Going back to our event publishing example earlier, we would finish out that
example like this:

public class StudentServiceImpl
 implements StudentService, ApplicationContextAware {

 private ApplicationContext context;

 public void setApplicationContext(ApplicationContext context) {
 this.context = context;
 }

 public void enrollStudentInCourse(Course course, Student student)
 throws CourseException;
 …
 context.publishEvent(new CourseFullEvent(this, course));
 …

 }
 …
}

90 CHAPTER 2
Wiring beans

Being aware of the application container is both a blessing and a curse for a bean.
On the one hand, access to the application context affords the bean a lot of
power. On the other hand, being aware of the container couples the bean to
Spring and is something that should be avoided if possible.

2.5 Summary

At the core of the Spring framework is the Spring container. Spring comes with
several implementations of its container, but they all fall into one of two catego-
ries. A BeanFactory is the simplest form of container, providing basic dependency
injection and bean wiring services. But when more advanced framework services
are needed, Spring’s ApplicationContext is the container to use.

 In this chapter, you’ve seen how to wire beans together within the Spring con-
tainer. Wiring is typically performed within a Spring container using an XML file.
This XML file contains configuration information for all of the components of an
application along with information that helps the container perform dependency
injection to associate beans with other beans that they depend on.

 You’ve also seen how to instruct Spring to automatically wire beans together by
using reflection and making some guesses about which beans should be associ-
ated with each other.

 Finally, you learned how to write and use special beans that become directly
involved in Spring’s wiring process. These special beans may alter how Spring
performs wiring by changing how String values are interpreted (as is the case with
CustomEditorConfigurer and PropertyPlaceholderConfigurer). Special beans can
also be made aware of who they are and what container they are running in so
that they can interact directly with their environment. Or a special bean may sim-
ply listen for and respond to application events as they are published.

 Everything you learned in this chapter is the basis for what is to come. You’ll
continue working with Spring’s bean definition XML file as you add more func-
tionality to the Spring Training application. You’ll also start recognizing practical
uses of Spring’s special beans and how they are used throughout Spring.

 In the next chapter, you’ll learn about Spring’s aspect-oriented programming
support. You’ll find that dependency injection and AOP are complementary ways
to extract common logic into loosely coupled modules. Spring’s AOP support is
important, not only because it enables you to modularize application concerns,

but also because it is the basis for Spring’s support for declarative transactions,
which we’ll cover in chapter 5.

Creating aspects
This chapter covers
■ Defining aspect-oriented programming
■ Adding advice before, after, and around methods
■ Defining pointcuts with regular expressions
■ Automating the creation of advised beans
91

92 CHAPTER 3
Creating aspects

In chapter 2 you learned how Spring can help manage and configure your applica-
tion objects. You can follow sound object-oriented design, write loosely coupled
code, and use Spring’s inversion of control to make connecting your collaborators
painless. But sometimes you have functionality that is used throughout your appli-
cation that does not fit nicely into a single object hierarchy. This is where aspect-
oriented programming (AOP) comes in.

 Spring’s AOP framework allows you to code functionality that is sprinkled
throughout your application in one place—an aspect. Using Spring’s powerful
pointcut mechanism, you have a wide range of choices of how and where to apply
your aspects in your application. This allows you to add powerful services, such as
declarative transaction management, to simple JavaBeans.

3.1 Introducing AOP

Before we get started on how Spring implements AOP, we’ll first cover the basics
of AOP. It is important to understand AOP fundamentals and how AOP can help
you write cleaner applications.

 Most definitions of AOP say something about the modularization of cross-
cutting concerns. Unfortunately, the term cross-cutting is not used often outside of
an AOP context, so it doesn’t have much meaning for most developers. Figure 3.1
gives a visual depiction of cross-cutting concerns.

 This figure represents a typical application that is broken down into modules.
Each module’s main concern is to provide services for its particular domain.
However, each of these modules also requires similar ancillary functionalities,
such as security and transaction management. The common object-oriented
technique for reusing common functionality is through inheritance or delega-
tion. But inheritance can lead to a brittle object hierarchy if the same base class is
Figure 3.1
Cross-cutting
concerns

http://www.thesimpsons.com
http://www.thesimpsons.com

Introducing AOP 93

used throughout an application, and delegation can be cumbersome and still
requires duplicated calls to the delegate object.

 AOP presents an alternative that can be cleaner in many circumstances. With
AOP, you still define the common functionality in one place, but you can declara-
tively define how and where this functionality is applied without having to modify
the class to which you are applying the new feature. Cross-cutting concerns can
now be modularized into special objects called aspects. This has two benefits. First,
the logic for each concern is now in one place, as opposed to being scattered all
over the code base. Second, our service modules are now cleaner since they only
contain code for their core functionality and secondary concerns have been
moved to aspects.

3.1.1 Defining AOP terminology

Like most technologies, AOP has a jargon unto itself. Unfortunately, many of the
terms used to describe AOP features are not intuitive. But they are now part of
the AOP language and, in order to understand AOP, you must know this language.
In other words, before you walk the walk, you have to learn to talk the talk.

Aspect
An aspect is the cross-cutting functionality you are implementing. It is the aspect,
or area, of your application you are modularizing. The most common (albeit sim-
ple) example of an aspect is logging. Logging is something that is required
throughout an application. However, because applications tend to be broken
down into layers based on functionality, reusing a logging module through inher-
itance does not make sense. However, you can create a logging aspect and apply it
throughout your application using AOP.

Joinpoint
A joinpoint is a point in the execution of the application where an aspect can be
plugged in. This point could be a method being called, an exception being
thrown, or even a field being modified. These are the points where your aspect’s
code can be inserted into the normal flow of your application to add new behavior.

Advice
Advice is the actual implementation of our aspect. It is advising your application
of new behavior. In our logging example, the logging advice would contain the

code that implements the actual logging, such as writing to a log file. Advice is
inserted into our application at joinpoints.

94 CHAPTER 3
Creating aspects

Pointcut
A pointcut defines at what joinpoints advice should be applied. Advice can be
applied at any joinpoint supported by the AOP framework. Of course, you don’t
want to apply all of your aspects at all of the possible joinpoints. Pointcuts allow
you to specify where you want your advice to be applied. Often you specify these
pointcuts using explicit class and method names or through regular expressions
that define matching class and method name patterns. Some AOP frameworks
allow you to create dynamic pointcuts that determine whether to apply advice
based on runtime decisions, such as the value of method parameters.

Introduction
An introduction allows you to add new methods or attributes to existing classes
(kind of mind-blowing, huh?). For example, you could create an Auditable advice
class that keeps the state of when an object was last modified. This could be as
simple as having one method, setLastModified(Date), and an instance variable
to hold this state. This can then be introduced to existing classes without having to
change them, giving them new behavior and state.

Target
A target is the class that is being advised. This can be either a class you write or a
third-party class to which you want to add custom behavior. Without AOP, this
class would have to contain its primary logic plus the logic for any cross-cutting
concerns. With AOP, the target class is free to focus on its primary concern, obliv-
ious to any advice being applied.

Proxy
A proxy is the object created after applying advice to the target object. As far as
the client objects are concerned, the target object (pre-AOP) and the proxy object
(post-AOP) are the same—as it should be. That is, the rest of your application will
not have to change to support the proxy class.

Weaving
Weaving is the process of applying aspects to a target object to create a new, prox-
ied object. The aspects are woven into the target object at the specified joinpoints.
The weaving can take place at several points in the target class’s lifetime:
■ Compile time—Aspects are woven in when the target class is compiled. This
requires a special compiler.

Introducing AOP 95

■ Classload time—Aspects are woven in when the target class is loaded into
the JVM. This requires a special ClassLoader that enhances that target
class’s bytecode before the class is introduced into the application.

■ Runtime—Aspects are woven in sometime during the execution of the
application. Typically, an AOP container will dynamically generate a proxy
class that will delegate to the target class while weaving in the aspects.

That’s a lot of new terms to get to
know. Figure 3.2 illustrates the key
AOP concepts in action.

 The advice contains the cross-
cutting behavior that needs to be
applied. The joinpoints are all the
points within the execution flow of
the application that are candidates
to have advice applied. The point-
cut defines at what joinpoints that
advice is applied. The key concept
you should take from this? Pointcuts
define which joinpoints get advised.

3.1.2 Spring’s AOP implementation

Not all AOP frameworks are created equal. They may differ on how rich of a join-
point model they offer. Some may allow you to apply advice at the field modifica-
tion level, while others only expose the joinpoints related to method invocations.
They may also differ on how and when they weave the aspects. Whatever the case,
the ability to create pointcuts that define the joinpoints at which aspects should
be woven is what makes it an AOP framework.

 Although there are several implementations of AOP, right now we are con-
cerned with how Spring implements AOP. So let’s take a look at the key points of
Spring’s AOP framework.

Spring advice is written in Java
All of the advice you create within Spring will be written in a standard Java class.

Figure 3.2 Applying an aspect
This means you will get the benefit of developing your aspects in the same inte-
grated development environment (IDE) you would use for your normal Java devel-
opment. What’s more, the pointcuts that define where advice should be applied

96 CHAPTER 3
Creating aspects

are typically written in XML in your Spring configuration file. This means both the
aspect’s code and configuration syntax will be familiar to Java developers.

 Other frameworks out there, specifically AspectJ, require a special syntax to
write the aspect and define pointcuts. There are benefits and drawbacks to this
approach. By having an AOP-specific language, you get more power and fine-
grained control, as well as a richer AOP toolset. However, you are required to
learn a new tool and syntax to accomplish this.

Spring’s advises objects at runtime
Spring does not create a proxied object until that proxied bean is needed by the
application. If you are using an ApplicationContext, the proxied objects will be
created when it loads all of the beans from the BeanFactory. Because Spring cre-
ates proxies at runtime, you do not need a special compiler to use Spring’s AOP.

 Spring generates proxied classes in two ways. If your target object implements
an interface(s) that exposes the required methods, Spring will use the JDK’s
java.lang.reflect.Proxy class. This class allows Spring to dynamically generate
a new class that implements the necessary interfaces, weave in any advice, and
proxy any calls to these interfaces to your target class.

 If your target class does not implement an interface, Spring uses the CGLIB1

library to generate a subclass to your target class. When creating this subclass,
Spring weaves in advice and delegates calls to the subclass to your target class.
When using this type of proxy generation, you need to deploy all of the JAR files
in the lib/cglib directory of your Spring distribution with your application.
There are two important things to take note of when using this approach:

■ Creating a proxy with interfaces is favored over proxying classes, since this
leads to a more loosely coupled application. The ability to proxy classes is
provided so that legacy or third-party classes that do not implement inter-
faces can still be advised. This approach should be taken as the exception,
not the rule.

■ Methods marked as final cannot be advised. Remember, Spring generates
a subclass to your target class. Any method that needs to be advised is over-
ridden and advice is woven in. This is not possible with final methods.
1 CGLIB is an open source, high-performance code generation library. You can find more information
about CGLIB at http://cglib.sourceforge.net.

Creating advice 97

Spring implements AOP Alliance interfaces
The AOP Alliance is a joint project between several parties interested in imple-
menting AOP in Java. The AOP Alliance shares the same belief as Spring that AOP
can provide cleaner and easier solutions for Java enterprise applications than what
is currently offered by EJB. Their goal is to standardize Java’s AOP interface to pro-
vide interoperability between various Java AOP implementations. This means that
AOP advice that implements their interfaces (as do some of Spring’s implementa-
tions) will be reusable in any other AOP Alliance–compatible framework.

Spring only supports method joinpoints
As mentioned earlier, multiple joinpoint models are available through various
AOP implementations. Spring only supports method joinpoints. This is in con-
trast to some other AOP frameworks, such as AspectJ and JBoss, which provide
field joinpoints as well. This prevents you from creating very fine-grained advice,
such as intercepting updates to an object’s field.

 However, as Spring focuses on providing a framework for implementing J2EE
services, method interception should suit most, if not all, of your needs. Plus,
Spring’s philosophy is that field interception violates encapsulation. A funda-
mental object-oriented concept is that objects initiate operations on themselves
and other objects through method calls. Having advice fired on field modifica-
tion as opposed to method invocation arguably violates this concept.

 Now you have a general idea of what AOP does and how it is supported by
Spring. Let’s take a look at how to create the different advice types in Spring.

3.2 Creating advice

If you recall from the previous section, advice contains the logic of your aspect. So
when you create an advice object, you are writing the code that implements the
cross-cutting functionality. Also, remember that Spring’s joinpoint model is built
around method interception. This means that the Spring advice you write will be
woven into your application at different points around a method’s invocation.
Because there are several points during the execution of a method that Spring
can weave in advice, there are several different advice types. Table 3.1 lists the
types of advice offered by Spring and where they are woven into your code.2
2 Actually, there is another advice type that is omitted: introduction advice. Since this advice type is han-
dled so differently than the others, we devoted a section specifically to introduction advice later in this
chapter.

98 CHAPTER 3
Creating aspects

As you can see, these different advice types give you opportunities to add behav-
ior before and after a method invocation, as well as when a method throws an
exception. In addition, you can put advice around a method and optionally pre-
vent the target method from even being called. So now that you know what advice
types are at your disposal, exactly how do you go about implementing them?

 To demonstrate this, we are going to create a running example. This example
is meant to serve as a simple illustration of Spring AOP at work and not as a work-
ing J2EE application (don’t worry, we’ll get to that). To do so, let’s take a trip to
Springfield and visit Apu’s KwikEMart (see http://www.thesimpsons.com for more
information). We will start off with the KwikEMart interface where a Customer can
purchase a Squishee:

public interface KwikEMart {
 Squishee buySquishee(Customer customer) throws KwikEMartException;
}

We also have an implementation of this interface: ApuKwikEMart. As listing 3.1
illustrates, our implementation is quite simple, but it does what we need.

public class ApuKwikEMart implements KwikEMart {

 private boolean squisheeMachineEmpty;

 public Squishee buySquishee(Customer customer)
 throws KwikEMartException {

Table 3.1 Advice types in Spring

Advice type Interface Description

Around org.aopalliance.intercept.MethodInterceptor Intercepts calls to the tar-
get method

Before org.springframework.aop.BeforeAdvice Called before the target
method is invoked

After org.springframework.aop.AfterReturningAdvice Called after the target
method returns

Throws org.springframework.aop.ThrowsAdvice Called when target
method throws an
exception

Listing 3.1 ApuKwikEMart.java
 if (customer.isBroke()) {
 throw new CustomerIsBrokeException();
 }

Creating advice 99

 if (squisheeMachineEmpty) {
 throw new NoMoreSquisheesException();
 }
 return new Squishee();
 }
}

Without much effort we have a working KwikEMart implementation, including test
cases. Now we want to add some additional behavior to this class. However, the
class is working just fine doing its fundamental duty—serving Squishees. So
instead of cracking open this class and adding more code, we are going to create
some advice instead.

3.2.1 Before advice
As any convenience store owner knows, friendly customer service is key. So before
our customers purchase their Squishee, we want to give them a warm greeting. To
do this, we need to add some functionality before the buySquishee() method is
executed. To accomplish this, we extend the MethodBeforeAdvice interface:

public interface MethodBeforeAdvice {
 void before(Method method, Object[] args, Object target)
 throws Throwable
}

This interface provides you with access to the target method, the arguments
passed to this method, and the target object of the method invocation. Since you
have access to the method arguments, you have the opportunity to implement
advice using the runtime parameters. However, you cannot change the identity of
these values. That is, you cannot substitute different argument objects or a differ-
ent target object. You can alter these objects; just use caution when doing so.

 Now let’s take a look at our implementation of MethodBeforeAdvice, shown in
listing 3.2.

package com.springinaction.chapter03.store;

import java.lang.reflect.Method;
import org.springframework.aop.MethodBeforeAdvice;

Listing 3.2 WelcomeAdvice.java
public class WelcomeAdvice implements MethodBeforeAdvice {
 public void before(Method method, Object[] args, Object target) {
 Customer customer = (Customer) args[0]; Cast first argument to Customer

../../../org/springframework/aop/ClassFilter.html
../../../org/springframework/aop/MethodMatcher.html

100 CHAPTER 3
Creating aspects

 System.out.println("Hello " + customer.getName() +
 ". How are you doing?");
 }
}

Because the buySquishee() method we will be advising has only one argument, we
cast the first element in the argument array to a Customer. Then all we have do to
is give the Customer a nice, warm greeting.

 Notice that we do not return anything at the end of the method. This is
because the return type is void. It is void because the target method will always be
called after the MethodBeforeAdvice returns and it is the target method that is
responsible for returning any values. The only way MethodBeforeAdvice can pre-
vent the target method from being invoked is to throw an exception (or call Sys-
tem.exit(), but we don’t want to do that!). The results of throwing an exception
depend on the type of exception thrown. If the exception is a RuntimeException
or if it is in the throws clause of the target method, it will propagate to the calling
method. Otherwise, Spring’s framework will catch the exception and rethrow it
wrapped in a RuntimeException.

 Now that we have our advice, we need to apply it to our KwikEMart object. We
do this through our Spring configuration file (kwikemart.xml), shown in
listing 3.3.

<beans>

 <bean id="kwikEMartTarget"
 class="com.springinaction.chapter03.store.ApuKwikEMart"/>

 <bean id="welcomeAdvice"
 class="com.springinaction.chapter03.store.WelcomeAdvice"/>

 <bean id="kwikEMart"
 class="org.springframework.aop.framework.ProxyFactoryBean">
 <property name="proxyInterfaces">
 <value>com.springinaction.chapter03.store.KwikEMart</value>
 </property>
 <property name="interceptorNames">
 <list>
 <value>welcomeAdvice</value>

Listing 3.3 Wiring MethodBeforeAdvice to a bean

Say hello to
Customer

Create proxy
target object

Create advice

Create
proxy
bean
 </list>
 </property>
 <property name="target">

Creating advice 101

 <ref bean="kwikEMartTarget"/>
 </property>
 </bean>

</beans>

We now have a KwikEMart bean that has the WelcomeAdvice applied to it. And if
you notice, we created this bean using Spring’s ProxyFactoryBean class. This is
also your introduction to this very important class in Spring’s AOP framework.
The ProxyFactoryBean class is used by BeanFactory and ApplicationContext
objects to generate proxies. In the above example, we configure a ProxyFactory-
Bean using several of that bean’s properties. Going down the list of properties in
the example above, we tell Spring to create a bean that does the following:

■ Implements the KwikEMart interface
■ Applies the WelcomeAdvice (id welcomeAdvice) advice object to all incom-

ing calls
■ Uses the ApuKwikEMart bean (id kwikEMartTarget) as the target object

The ProxyFactoryBean class is a central class for explicitly creating proxied
objects within a BeanFactory. As demonstrated, you can give it an interface to
implement, a target object to proxy, and advice to weave in, and it will create a
brand-new proxied object. And as in the example above, you will typically config-
ure the ProxyFactoryBean to implement the same interface as your target object.
We will explore this class in more detail in section 3.5. For now, assume we are
going to configure all KwikEMart advice as illustrated in listing 3.3 unless other-
wise noted.

3.2.2 After advice

Staying with the courteous store owner theme, we want to make sure we thank our
patrons after they make their purchase. To do this, we implement AfterReturning-
Advice:

public interface AfterReturningAdvice {
 void afterReturning(Object returnValue, Method method,
 Object[] args, Object target) throws Throwable
 }
}

Create
proxy
bean
Like MethodBeforeAdvice, this advice gives you access to the method that was
called, the arguments that were passed, and the target object. You also have access

102 CHAPTER 3
Creating aspects

to the return value of the advised method. Again, this interface returns void.
While you have access to the return value of the target method, you cannot sub-
stitute a different return value. And as with MethodBeforeAdvice, the only way you
can alter the flow of execution is by throwing an exception. The behavior for han-
dling thrown exceptions is the same as MethodBeforeAdvice, as well.

 Listing 3.4 shows what our advice would look like in our example.

package com.springinaction.chapter03.store;

import java.lang.reflect.Method;
import org.springframework.aop.AfterReturningAdvice;

public class ThankYouAdvice implements AfterReturningAdvice {

 public void afterReturning(Object returnValue, Method method,
 Object[] arg2, Object target) throws Throwable {
 System.out.println("Thank you. Come again!");
 }
}

With this advice, any normal method exit (i.e., no exception is thrown) of our
proxied method will result in our customer being thanked.

3.2.3 Around advice

So far we have seen how to weave advice before and after a method. MethodInter-
ceptor provides the ability to do both in one advice object:

public interface MethodInterceptor extends Interceptor {
 Object invoke(MethodInvocation invocation) throws Throwable;
}

There are two important differences between the MethodInterceptor interface
and the previous two types of advice. First, the MethodInterceptor implementa-
tion controls whether the target method is actually invoked. Invoking the target
method is done by calling MethodInvocation.proceed(). This is in contrast to
MethodBeforeAdvice, where the target method is always called unless you throw
an exception.

Listing 3.4 ThankYouAdvice.java
 Second, MethodInterceptor gives you control over what object is returned. This
means you can return a completely different object than the one returned by pro-
ceed(). Remember, with AfterReturningAdvice you had access to the object being

Creating advice 103

returned, but you could not return a different object. While MethodInterceptor
provides this added flexibility, you should use caution when returning a different
object than the one returned by the target method and only do so when necessary.

 Let’s take a look at MethodInterceptor in use. Suppose we have a rule that a
customer can order only one Squishee. OnePerCustomerInterceptor is shown in
listing 3.5.

package com.springinaction.chapter03.store;

import java.util.HashSet;
import java.util.Set;

import org.aopalliance.intercept.MethodInterceptor;
import org.aopalliance.intercept.MethodInvocation;

public class OnePerCustomerInterceptor implements MethodInterceptor {

 private Set customers = new HashSet();

 public Object invoke(MethodInvocation invocation)
 throws Throwable {
 Customer customer = (Customer) invocation.getArguments()[0];
 if (customers.contains(customer)) {
 throw new KwikEMartException("One per customer.");
 }
 Object squishee = invocation.proceed();
 customers.add(customer);
 return squishee;
 }

}

Notice that we have logic before and after the target method being invoked.
Before we call the target method, we want to make sure the customer has not
already purchased a Squishee. If they have not, we continue. After our target
method has executed, we “remember” the customer so they cannot purchase
another Squishee.

 This example serves as a demonstration of when you should use this type of
advice. You should only use a MethodInterceptor when you require cross-cutting

Listing 3.5 OnePerCustomerInterceptor.java

Define Set containing
previous customers

Get current
customer

Throw exception if
repeat customer

Invoke target method
Add customer to Set

Return result of
target method
aspect logic on both sides of the method invocation. Since you have to remember
to explicitly call invocation.proceed(), it is better to use MethodBeforeAdvice or
AfterReturningAdvice if this will satisfy your needs.

104 CHAPTER 3
Creating aspects

 There is one more thing you should notice about MethodInterceptor. If you
remember from table 3.1, MethodInterceptor in an AOP Alliance interface.
This means that any advice you implement using this interface is compatible
with any other AOP framework that is compliant with the AOP Alliance. You
may want to make special note of this if you are planning to work with multi-
ple AOP frameworks.

3.2.4 Throws advice

So what happens if something goes wrong during the method invocation and an
exception is thrown? ThrowsAdvice lets you define behavior should an exception
occur. Unlike the previous advice types, ThrowsAdvice is a marker interface and
contains no methods that need to be implemented. Instead, a class that imple-
ments this interface must have at least one method with either of the following
two signatures:

void afterThrowing(Throwable throwable)

void afterThrowing(Method method, Object[] args, Object target,
 Throwable throwable)

The first of these methods receives only one argument: the exception that was
thrown. The second of these receives the exception and the invoked method, its
argument, and the target object. Unless you need these additional arguments,
you will only need to implement the one-argument variety. The type of exception
handled by your ThrowsAdvice is determined by the type in your method signa-
ture. For example, void afterThrowing(KwikEMartException e) will catch any
KwikEMartException, but void afterThrowing(NoMoreSquisheesException e)

would only catch that specific subclass of KwikEMartException.
 You can also have more than one afterThrowing method in the same class.

Listing 3.6 gives an example of ThrowsAdvice in action.

package com.springinaction.chapter03.store;

import org.springframework.aop.ThrowsAdvice;

public class KwikEMartExceptionAdvice implements ThrowsAdvice {

Listing 3.6 KwikEMartExceptionAdvice.java
 public void afterThrowing(NoMoreSquisheesException e) {
 orderMoreSquishees();
 }

Defining pointcuts 105

 public void afterThrowing(CustomerIsBrokeException e) {
 showCustomerAtmMachine();
 }
}

The correct method will be called depending on what type of exception is thrown.
Notice that both of these methods add additional behavior to the application, but
neither catches and handles the exception. This is because you cannot do this. The
proxy object is catching the exception and calling the appropriate ThrowsAdvice
method, if there is one. After the ThrowsAdvice is executed, the original exception
will still be thrown and will propagate up the stack like any other exception. The
only way your ThrowsAdvice can change this is to throw another exception.

3.2.5 Introduction advice

Introduction advice is a little different from the other types of advice we just cov-
ered. All the other types are woven in at some point surrounding a target object’s
method invocation. Introduction advice adds new methods (and attributes) to the
target object. This is probably the most complex advice type to understand. And
to understand Spring’s introduction advice, you need to understand its pointcuts
as well. So we will discuss pointcuts in the next section and revisit introduction
advice in more detail in section 3.4.

3.3 Defining pointcuts

So far we have only discussed how to write advice. This is not very useful if we can-
not expressively define where this advice should be applied in our application.
This is where pointcuts come in. Pointcuts determine if a particular method on a
particular class matches a particular criterion. If the method is indeed a match,
then advice will be applied to this method. Spring’s pointcuts allow us to define
where our advice is woven into our classes in a very flexible manner.

3.3.1 Defining a pointcut in Spring

Spring defines pointcuts in terms of the class and method that is being advised.
Advice is woven into the target class and its methods are based on their character-
istics, such as class name and method signature. The core interface for Spring’s
pointcut framework is, naturally, the Pointcut interface.
public interface Pointcut {
 ClassFilter getClassFilter();

106 CHAPTER 3
Creating aspects

 MethodMatcher getMethodMatcher();
}

This is logical since we just said a Pointcut decides where to weave our advice
based on our method and classes. The ClassFilter interface determines if a class
is eligible for advising:

public interface ClassFilter {
 boolean matches(Class clazz);
}

Classes implementing this interface determine if the Class that is passed in as an
argument should be advised. Typical implementations of this interface make this
decision based on the name of the class, but this does not always have to be the
case. This interface also contains a simple implementation of the ClassFilter
interface, ClassFilter.TRUE. This is the canonical instance of ClassFilter that
matches any class, which can be useful for creating a Pointcut that only considers
methods when matching.

 While ClassFilter lets you filter your aspects by class, you are more likely
interested in filtering by method. This feature is provided by the MethodMatcher
interface:

public interface MethodMatcher {
 boolean matches(Method m, Class targetClass);
 public boolean isRuntime();
 public boolean matches(Method m, Class target, Object[] args);
}

As you can see, there are three methods in this interface, but each one is used in a
certain point in a proxied object’s life cycle. The matches(Method, Class) method
determines whether a method is a candidate to be advised based on the target
Class and Method. Since this can be determined statically, this method is only
called once—when the AOP proxy is created. The result of this method deter-
mines if the advice is woven in at all.

 If matches(Method, Class) returns true, isRuntime() is called to determine
what type of MethodMatcher this is. There are two types: static and dynamic. Static
pointcuts define advice that is always executed. If a pointcut is static, isRuntime()
should return false. Dynamic pointcuts determine if advice should be executed
by examining the runtime method arguments. If a pointcut is dynamic, isRun-
time() should return true. Like matches(Method, Class), isRuntime() is only

called once—when the proxy class is created.

 If a pointcut is static, matches(Method, Class, Object[]) is never called, since
runtime arguments are not necessary for determining whether advice should be

Defining pointcuts 107

applied. For dynamic pointcuts, the matches(Method, Class, Object[]) method is
called at runtime for every invocation of the target method. This adds runtime
overhead for every time this method is invoked. To avoid this, use static pointcuts
wherever possible.

 Now you know how to define pointcuts in Spring. Although you can imple-
ment the Pointcut interface yourself, you will most likely use one of Spring’s pre-
defined Pointcut implementations. This is what we will explore next. Well, not
exactly next. We need to cover advisors first.

3.3.2 Understanding advisors

Before we cover Spring’s built-in pointcuts, you must understand another Spring
concept: an advisor. Most aspects are a combination of advice that defines the
aspect’s behavior and a pointcut defining where the aspect should be executed.
Spring recognizes this and offers advisors, which combine advice and pointcuts
into one object. More specifically, the PointcutAdvisor does this.

public interface PointcutAdvisor {
 Pointcut getPointcut();
 Advice getAdvice();
}

Most of Spring’s built-in pointcuts also have a corresponding PointcutAdvisor.
This is convenient if you want to define a pointcut and the advice it is managing
in one place. As we discuss pointcuts in depth, we will use PointcutAdvisors in of
our examples where it makes sense.

3.3.3 Using Spring’s static pointcuts

As discussed earlier, static pointcuts are preferred because they perform better
than dynamic pointcuts since they are evaluated once (when the proxy is created)
rather than at each runtime invocation. Spring provides a convenience superclass
for creating static pointcuts: StaticMethodMatcherPointcut. So if you want to cre-
ate a custom static pointcut, you can override this class and implement the
isMatch method.

 But for most of your needs, you will use a static pointcut provided by Spring.

NameMatchMethodPointcut
The most basic of these is the NameMatchMethodPointcut. This class has two meth-

ods you should be interested in:

public void setMappedName(String)
public void setMappedNames(String[])

108 CHAPTER 3
Creating aspects

As you might have guessed, this pointcut matches when the invoked method’s
name matches one of the given mapped names. You can provide explicit method
names or use the wildcard character * at the beginning or end of the name. For
instance, setting the mappedName property to set* will match all setter methods.
Note that this matching only applies to the method name itself, not the fully qual-
ified name that includes that class name as well. The two methods above behave
exactly the same, except that the former matches against one name, while the lat-
ter looks at an array of Strings for a match. If any one of the mapped Strings
matches, then the method is considered a match.

 For example, let’s say instead of a Spring Training service, we are running a
Spring Cleaning maid service. For this application, we have a MaidService inter-
face that has several methods for ordering services, such orderFurniturePolish-
ing and orderWindowCleaning. For each of these methods, we want to add an
aspect that adds points to the orderer’s account so they can earn free services
offered to frequent customers. Listing 3.7 illustrates how we would map this using
a NameMatchMethodPointcut.

<beans>

 <bean id="maidServiceTarget" class="com.springinaction.
 chapter03.cleaning.MaidServiceImpl"/>

 <bean id="frequentCustomerAdvice" class="com.springinaction.
 chapter03.cleaning.FrequentCustomerAdvice"/>

 <bean id="frequentCustomerPointcutAdvisor"
 class="org.springframework.aop.support.
 NameMatchMethodPointcutAdvisor">
 <property name="mappedName">
 <value>order*</value>
 </property>
 <property name="advice">
 <ref bean="frequentCustomerAdvice"/>
 </property>
 </bean>

 <bean id="maidService"
 class="org.springframework.aop.framework.ProxyFactoryBean">
 <property name="proxyInterfaces">
 <value>com.springinaction.chapter03.

Listing 3.7 Configuring a NameMatchMethodPointcutAdvisor

➥

➥

➥

 cleaning.MaidService</value>
 </property>
 <property name="interceptorNames">

➥

Defining pointcuts 109

 <list>
 <value>frequentCustomerAdvisor</value>
 </list>
 </property>
 <property name="target">
 <value ref="maidServiceTarget">
 </property>
 </bean>

</beans>

When our proxy is created, invocations of any method on our MaidService object
that begins with order will be advised by our FrequentCustomerAdvice. And
instead of supplying the wildcard characters, we just as easily explicitly name each
of these methods:

<property name="mappedNames">
 <list>
 <value>orderFurniturePolishing</name>
 <value>orderWindowCleaning</name>
 </list>
</property>

Using a NamedMethodMatcherPointcut works well for clearly expressing exactly
which methods you want advised. However, listing every method name you want
advised could become quite verbose for a large application. Using the wildcard
can help this, but its usefulness is limited if you want fine-grained control over
your pointcuts. That is where regular expressions come in.

Regular expression pointcuts
Spring’s RegexpMethodPointcut lets you leverage the power of regular expressions
to define your pointcuts. This enables you to use Perl-style regular expressions to
define the pattern that should match your intended methods. If you are unfamil-
iar with regular expressions, table 3.2 lists the symbols you will most likely use
when defining pointcuts.

Table 3.2 Common regular expression symbols used in pointcuts

Symbol Description Example

. Matches any single character setFoo. matches setFooB, but not setFoo or
setFooBar
+ Matches the preceding character one
or more times

setFoo.+ matches setFooBar and setFooB,
but not setFoo

continued on next page

110 CHAPTER 3
Creating aspects

Unlike the NameMethodMatcherPointcut, these patterns include the class name as
well as the method name. That means if we want to match all setXxx methods, we
need to use the pattern .*set.* (the first wildcard will match any preceding class
name). Also, when you are using the RegexpMethodPointcut, you need to include
the Jakarta Commons ORO 3 library in your application.

 Continuing with our Spring Cleaning business, our MaidService interface also
offers clients different methods for querying our cleaning packages, such as get-
PackagesByPrice() and getSpecialsByDay(). We decide we want to capture the
details of our customers’ queries so we know what they are looking for most fre-
quently. So, we create a QueryInterceptor to do just that. We would apply this
interceptor to our query methods as illustrated in listing 3.8.

<beans>

 <bean id="maidServiceTarget"
 class="com.springinaction.chapter03.cleaning.MaidService"/>

 <bean id="queryInterceptor" class="com.springinaction.
 chapter03.cleaning.QueryInterceptor"/>

 <bean id="queryPointcutAdvisor"
 class="org.springframework.aop.support.RegExpPointcutAdvisor">
 <property name="pattern">
 <value>.*get.+By.+</value>
 </property>
 <property name="advice">
 <ref bean="queryInterceptor"/>
 </property>
 </bean>

* Matches the preceding character zero
or more times

setFoo.* matches setFoo, setFooB and
setFooBar

\ Escapes any regular expression symbol \.setFoo. matches bar.setFoo , but not and
setFoo

Listing 3.8 Configuring a RegexpMethodPointutAdvisor

Table 3.2 Common regular expression symbols used in pointcuts (continued)

Symbol Description Example

➥

3 Jakarta Commons ORO is an open source utility for text-processing using Perl and Awk regular ex-
pressions. Its name comes from the company that donated the original libraries, ORO Inc. You can
learn more about ORO at http://jakarta.apache.org/oro/.

Defining pointcuts 111

 <bean id="maidService"
 class="org.springframework.aop.framework.ProxyFactoryBean">
 <property name="proxyInterfaces">
 <value>com.springinaction.chapter03.
 cleaning.MaidService</value>
 </property>
 <property name="interceptorNames">
 <list>
 <value>queryPointcutAdvisor</value>
 </list>
 </property>
 <property name="target">
 <value ref="maidServiceTarget">
 </property>
 </bean>

</beans>

Interpreting the regular expression, this means our pointcut should match any
method on any class that begins with get and then contains at least one character,
followed by By, followed by at least one character. As you can see, regular expres-
sions offer you a way to define pointcuts in a way that is more expressive than a
NameMatchMethodPointcut.

3.3.4 Using dynamic pointcuts

So far the only Spring-provided pointcuts we have discussed have been static
pointcuts. They will be the type of pointcuts you will use most often. However,
there may be some cases where your pointcuts will need to evaluate runtime
attributes. Spring provides one built-in dynamic pointcut: ControlFlowPointcut.
This pointcut matches based on information about the current thread’s call stack.
That is, it can be configured to return true only if a particular method or class is
found in the current thread’s stack of execution.

 For example, let’s say we have a service method that can be called from a vari-
ety of clients. If this method is initiated from a web application, we want to add
some additional logic in the form of a MethodBeforeAdvice (the content of this
advice is not important for this example). We can do so by creating a pointcut that
matches if our call stack contains a call from javax.servlet.http.HttpServlet.
Listing 3.9 illustrates how we would configure this.

➥

112 CHAPTER 3
Creating aspects

<beans>

 <bean id="myServiceTarget" class="MyServiceImpl"/>

 <bean id="servletInterceptor" class="MyServletInterceptor"/>

 <bean id="servletPointcut"
 class="org.springframework.aop.support.
 ControlFlowPointcut">
 <constructor-arg>
 <value>javax.servlet.http.HttpServlet</value>
 </constructor-arg>
 </bean>

 <bean id="servletAdvisor"
 class="org.springframework.aop.support.DefaultPointcutAdvisor">
 <property name="advice">
 <ref bean="servletInterceptor"/>
 </property>
 <property name="pointcut">
 <ref bean="servletPointcut"/>
 </property>
 </bean>

 <bean id="service"
 class="org.springframework.aop.framework.ProxyFactoryBean">
 <property name="proxyInterfaces">
 <value>MyService</value></property>
 <property name="interceptorNames">
 <list>
 <value>servletAdvisor</value>
 </list>
 </property>
 <property name="target">
 <value ref="myServiceTarget">
 </property>
 </bean>
</beans>

Now any call to a method in our service object that comes from an HttpServlet
will have the ServletAdvice applied. One important thing to point out about this
class is the performance penalty it imposes. You should use the ControlFlow-
Pointcut class only as needed because it is significantly slower than other

Listing 3.9 Configuring a ControlFlowPointcut
dynamic pointcuts. For Java 1.4, they may be 5 times slower, and for Java 1.3 they
could be more than 10 times slower.

Defining pointcuts 113

 As stated earlier, the ControlFlowPointcut is the only dynamic pointcut imple-
mentation provided by Spring. But remember, you can create your own dynamic
pointcut by implementing MethodMatcher and have the isRuntime() method
return true. This effectively makes the pointcut dynamic and the matches(Method
m, Class target, Object[] args) method will be called for every method invoca-
tion this pointcut evaluates. Again, keep in mind that this approach can have sig-
nificant performance penalties. And since a vast majority of your pointcut needs
can be resolved statically, we feel you will rarely have the occasion to create a
dynamic pointcut.

3.3.5 Pointcut operations
You can now create reusable pointcuts for your applications. Adding to this reus-
ability, Spring supports operations on these pointcuts—namely unions and inter-
sections—to create new pointcuts. Intersections match when both pointcuts
match; unions match when either pointcut matches. Spring provides two classes
for creating these types of pointcuts.

 The first of these classes is ComposablePointcut. You assemble Composable-
Pointcut objects by creating unions and intersections with existing Composable-
Pointcut objects and Pointcut, MethodMatcher, and ClassFilter objects. You do
this by calling one of the intersection() or union() methods on an instance of
ComposablePointcut. Each intersection() and union() returns the resulting Com-
posablePointcut object, which can be useful for chaining method calls like so:

ComposablePointcut p = new ComposablePointcut();
p = p.intersection (myPointcut).union(myMethodMatcher);

You can combine any number of Pointcut, ClassFilter, and MethodMatcher
objects in this manner. The only method not available in this class is a
union(Pointcut) method. To create a union between two Pointcut objects, you
must use the Pointcuts class. Pointcuts is a utility class that contains static meth-
ods that operate on Pointcut objects. Creating a union between two Pointcut
objects would look like this:

Pointcut union = Pointcuts.union(pointcut1, pointcut2);

You would create an intersection between two Pointcut objects in a similar fash-
ion. The one drawback to this approach is that it is done programmatically. It
would be nice if we could do the same thing in a declarative fashion. But since

Spring works so well configuring JavaBeans, there is no reason we could not con-
struct our own class that creates Pointcut unions in a configurable fashion. List-
ing 3.10 is an example of how this might be done.

114 CHAPTER 3
Creating aspects

package com.springinaction.chapter03.aop;

import java.util.List;

import org.springframework.aop.ClassFilter;
import org.springframework.aop.MethodMatcher;
import org.springframework.aop.Pointcut;
import org.springframework.aop.framework.AopConfigException;
import org.springframework.aop.support.Pointcuts;

public class UnionPointcut implements Pointcut {

 private Pointcut delegate;

 public ClassFilter getClassFilter() {
 return getDelegate().getClassFilter();
 }

 public MethodMatcher getMethodMatcher() {
 return getDelegate().getMethodMatcher();
 }

 private Pointcut getDelegate() {
 if (delegate == null) {
 throw new AopConfigException(
 "No pointcuts have been configured.");
 }
 return delegate;
 }

 public void setPointcuts(List pointcuts) {

 if (pointcuts == null || pointcuts.size() == 0) {
 throw new AopConfigException(
 "Must have at least one Pointcut.");
 }

 delegate = (Pointcut) pointcuts.get(0);

 for (int i = 1; i < pointcuts.size(); i++) {
 Pointcut pointcut = (Pointcut) pointcuts.get(i);
 delegate = Pointcuts.union(delegate, pointcut);
 }
 }

Listing 3.10 UnionPointcut.java

Declare unioned Pointcut instance

Delegate
Pointcut
interface
methods

Throw exception
if not configured

Create
unioned
Pointcut
}

Creating introductions 115

We now have a bean that allows us to declaratively create a Pointcut made up
of two or more existing Pointcut beans, freeing us from having to do this pro-
grammatically.

3.4 Creating introductions

As we mentioned earlier, introductions are a little different than the other types of
Spring advice. The other advice types are woven in at different joinpoints sur-
rounding a method invocation. Introductions affect an entire class. They do so by
adding new methods and attributes to the advised class. This means you can take
an existing class and have it implement additional interfaces and maintain addi-
tional state (this is also known as a mix-in). In other words, introductions allow you
to build composite objects dynamically, affording you the same benefits as multi-
ple inheritance.

3.4.1 Implementing IntroductionInterceptor

Spring implements introductions through a special subinterface of Method-
Interceptor: IntroductionMethodInterceptor. This interface adds one addi-
tional method:

 boolean implementsInterface (Class intf);

This method is critical to how introduction works. implementsInterface returns
true if the IntroductionMethodInterceptor is responsible for implementing the
given interface. This means that any invocation of a method that is declared by
this interface will be delegated to the invoke() method of the Introduction-
MethodInterceptor. The invoke() method is now responsible for implementing
this method—it cannot call MethodInvocation.proceed(). It is introducing the
new interface; proceeding to the target object doesn’t make sense.

 To better explain this, let’s return to our Spring Training application for an
example. We now have a new requirement where we have to track the time of the
most recent modification to any of our domain objects. Currently, none of these
objects (Course, Student, etc.) support this functionality. Instead of altering each
one of these classes to add this new method and state, we decide to introduce this
feature through, what else, an introduction.

 First, let’s take a look at the interface we are introducing in listing 3.11.

116 CHAPTER 3
Creating aspects

package com.springinaction.training.advice;

import java.util.Date;

public interface Auditable {
 void setLastModifiedDate(Date date);
 Date getLastModifiedDate();
}

Pretty straightforward, right? Now we need to implement an Introduction-
MethodInterceptor, as shown in listing 3.12.

package com.springinaction.training.advice;

import java.util.Date;

import org.aopalliance.intercept.MethodInvocation;
import org.springframework.aop.IntroductionInterceptor;

public class AuditableMixin
 implements IntroductionInterceptor, Auditable {

 public boolean implementsInterface(Class intf) {
 return intf.isAssignableFrom(Auditable.class);
 }

 public Object invoke(MethodInvocation m) throws Throwable {
 if (implementsInterface(m.getMethod().getDeclaringClass())) {
 return m.getMethod().invoke(this, m.getArguments());
 }
 else {
 return m.proceed();
 }
 }

 private Date lastModifiedDate;

 public Date getLastModifiedDate() {
 return lastModifiedDate;
 }

 public void setLastModifiedDate(Date lastModifiedDate) {
 this.lastModifiedDate = lastModifiedDate;
 }

Listing 3.11 Auditable.java

Listing 3.12 AuditableMixin.java subclassing IntroductionInterceptor

Implement
Auditable

Invoke introduced methodDelegate
other
method

Implement
mix-in
logic
}

Creating introductions 117

There are a couple things worth noting in this example. First, our class imple-
ments not only the Spring interface IntroductionInterceptor but also our busi-
ness interface Auditable. This is because this class is responsible for the actual
implementation of this interface. This is evident by the two Auditable methods
and the lastModifiedDate attribute that is used to keep track of the state.

 Second, implementsInterface returns true if the class declaring the invoked
method is of type Auditable. This means that for either of the two Auditable
methods, our interceptor must provide an implementation. And that is exactly
what we are doing in our invoke method; for any invocation of an Auditable
interface method, we invoke that method on our interceptor; for all others we
allow the method invocation to proceed.

 This is a typical introduction scenario—so typical, in fact, that Spring provides
a convenience class that handles most of this for us: DelegatingIntroduction-
Interceptor. Listing 3.13 shows how by using this class, our previous example
becomes much simpler.

package com.springinaction.training.advice.AuditableMixin;

import java.util.Date;

import org.springframework.aop.support.
 DelegatingIntroductionInterceptor;

public class AuditableMixin
 extends DelegatingIntroductionInterceptor implements Auditable {

 private Date lastModifiedDate;

 public Date getLastModifiedDate() {
 return lastModifiedDate;
 }

 public void setLastModifiedDate(Date lastModifiedDate) {
 this.lastModifiedDate = lastModifiedDate;
 }

}

Listing 3.13 AuditableMixin.java subclassing DelegatingIntroduction-
Interceptor

➥

Notice how we don’t have to implement invoke()—DelegatingIntroductionInter-

ceptor handles that for us. DelegatingIntroductionInterceptor will also implement

118 CHAPTER 3
Creating aspects

any interface exposed on your mix-in class and delegate any calls to these meth-
ods to this mix-in. Since our class implements Auditable, all invocations for
methods on this interface will be called on our interceptor. Any other methods
are delegated to the target object. If your interceptor class implements an inter-
face you do not want exposed as a mix-in, simply pass the interface to the
suppressInterface() method of the DelegatingIntroductionInterceptor class.

 Now we said that you do not have to implement invoke(), but you can if your
mix-in alters the behavior of any target method. For instance, suppose you have
an Immutable interface with a single method that you want to introduce. This
interface should provide the ability to make an object immutable—its internal
state cannot be changed. Listing 3.14 illustrates how we might do this.

package com.springinaction.chapter03.aop;

import org.aopalliance.intercept.MethodInvocation;
import org.springframework.aop.support.
 DelegatingIntroductionInterceptor;

public class ImmutableMixin
 extends DelegatingIntroductionInterceptor implements Immutable {

 private boolean immutable;

 public void setImmutable(boolean immutable) {
 this.immutable = immutable;
 }

 public Object invoke(MethodInvocation mi) throws Throwable {
 String name = mi.getMethod().getName();
 if (immutable && name.indexOf("set") == 0) {
 throw new IllegalModificationException();
 }
 return super.invoke(mi);
 }
}

Our mix-in now overrides invoke() so that it intercepts all method invocations.
We do this so any call to a method with the signature set* will throw an exception
if immutable is set to true. Notice how we call super.invoke() if we do not throw an

Listing 3.14 ImmutableMixin.java

➥

Keep track of
immutable

Throw
exception
if setter is
invoked
exception, as opposed to calling mi.proceed(). We do this so that the Delegating-
IntroductionInterceptor superclass can determine what class is responsible for

Creating introductions 119

handling the method invocation (it may not be our target object). It is important
that whenever you override the invoke() method you also call super.invoke() to
ensure the method invocation proceeds correctly.

3.4.2 Creating an IntroductionAdvisor

Now that we have our introduction advice, we need to create an advisor. Since
introduction advice is applied only at the class level, introductions have their own
advisor: IntroductionAdvisor. Spring also provides a default implementation
that is suitable most of the time. It is aptly named DefaultIntroductionAdvisor
and takes an IntroductionInterceptor as a constructor argument. So, when we
integrate an IntroductionAdvisor into our AuditableMixin example, listing 3.15
gives an example of what our configuration might look like.

<beans>

 <bean id="courseTarget"
 class="com.springinaction.training.model.Course"
 singleton="false"/>

 <bean id="auditableMixin"
 class="com.springinaction.training.advice.AuditableMixin"
 singleton="false"/>

 <bean id="auditableAdvisor" class="org.springframework.
 aop.support.DefaultIntroductionAdvisor"
 singleton="false">
 <constructor-arg>
 <ref bean="auditableMixin"/>
 </constructor-arg>
 </bean>

 <bean id="course"
 class="org.springframework.aop.framework.ProxyFactoryBean">
 <property name="proxyTargetClass">
 <value>true</value>
 </property>
 <property name="singleton">
 <value>false</value>
 </property>
 <property name="proxyInterfaces">
 <value>com.springinaction.training.advice.Auditable</value>
 </property>

Listing 3.15 Configuring an introduction

➥

 <property name="auditableAdvisor">
 <list>
 <value>servletAdvisor</value>

120 CHAPTER 3
Creating aspects

 </list>
 </property>
 <property name="target">
 <value ref="courseTarget">
 </property>
 </bean>

</beans>

One important thing to notice is all three of our AOP-related beans (auditable-
Mixin, auditableAdvisor, and course) have their singleton property set to false.
This is because we are introducing a stateful mixin. Therefore, we need to have a
new instance of each of these created every time we request a course bean from
the BeanFactory. If we did not set the singleton property to false, we would have
one introduction object holding the state for all of our advised objects. Clearly we
do not want this.

3.4.3 Using introduction advice carefully

Most other types of advice, such as before and after advice, typically introduce
new behavior. Introduction advice, on the other hand, adds new interfaces and
often new state to objects. This is a very powerful concept, but it must be used
with caution.

 In our earlier example, we are introducing the Auditable interface to our
Course class. However, this advice in woven into a Course object only when that
object is obtained from a Spring BeanFactory. Remember, Spring advice is woven
into your objects at runtime, as opposed to other AOP frameworks that may weave
the advice into the class’s bytecode. This means that a Course object that is cre-
ated or obtained by any other means will not have the introduced advice. This
applies to Course instances created by your code via a Course constructor,
instances created by another framework (e.g., a persistence framework such as
Hibernate), and instances that are deserialized.

 This means you cannot use introductions for objects that are created with your
code. It is possible to instantiate an object somewhere in your code but still have
the introduction advice applied. The way to do this is to acquire your object from
a factory. For example, you could create a CourseFactory interface that is used to
obtain new instance of Course objects:
public interface CourseFactory {
 Course getCourse();
}

Creating introductions 121

Since you don’t want your classes to depend on any Spring-specific classes, any
class that needs to obtain a new instance of a Course object can be wired with an
instance of a CourseFactory. You can then create an implementation that dele-
gates to the Spring BeanFactory, as shown in listing 3.16.

package com.springinaction.training.model;

import org.springframework.beans.factory.BeanFactory;
import org.springframework.beans.factory.BeanFactoryAware;

public BeanFactoryCourseFactory
 implements CourseFactory, BeanFactoryAware {

 private BeanFactory beanFactory;

 public void setBeanFactory(BeanFactory beanFactory) {
 this.beanFactory = beanFactory;
 }

 public Course getCourse() {
 return (Course) beanFactory.getBean("course");
 }
}

Now, instead of instantiating a Course object via a constructor, your code can
obtain new Course instances through a CourseFactory:

…
private CourseFactory courseFactory;

public void setCourseFactory(CourseFactory courseFactory) {
 this.courseFactory = courseFactory;
}

public void someMethod() {
 Course course = CourseFactory.getCourse();
 …
}

Your class now receives the advised version of the Course object, which was our
goal. This is one solution for getting new instances of objects that have introduc-
tion. However, if you rely on frameworks that also instantiate these same objects,

Listing 3.16 BeanFactoryCourseFactory.java
you may still have some problems. You should just be aware of this issue when
dealing with introduction advice.

122 CHAPTER 3
Creating aspects

3.5 Using ProxyFactoryBean

Throughout this chapter we demonstrated how to create an advised class using a
ProxyFactoryBean. When you want to explicitly control how your advising classes
are assembled, this is your best and most flexible choice.

 As you learned in the previous chapter, BeanFactory objects are JavaBeans that
are responsible for creating other JavaBeans. In this case, our ProxyFactoryBean
creates proxied objects. And like other JavaBeans, it has properties that control its
behavior. We touched on a couple of these earlier, but we are going to cover them all
in more detail right now. Table 3.3 explains each property on ProxyFactoryBean.

Table 3.3 ProxyFactoryBean properties

Property Use

target The target bean of the proxy.

proxyInterfaces A list of interfaces that should be implemented by the proxy.

interceptorNames The bean names of the advice to be applied to the target. These can be names
of interceptors, advisors, or any other advice type. This property must be set in
order to use this bean in a BeanFactory.

singleton Whether the factory should return the same instance of the proxy for each get-
Bean invocation. If you’re using stateful advice, this should be set to false.

aopProxyFactory The implementation of the ProxyFactoryBean interface to be used. Spring
comes with two implementations (JDK dynamic proxies and CGLIB). You proba-
bly won't need to use this property.

exposeProxy Whether the target class should have access to the current proxy. This is done
by calling AopContext.getCurrentProxy. Keep in mind that doing so
introduces Spring-specific AOP code into your code base, so this should be
avoided unless necessary.

frozen Whether changes can be made to the proxy’s advice once the factory is created.
When set to true, this disables runtime ProxyFactoryBean changes. You
will probably not need this property,

optimize Whether to aggressively optimize generated proxies (only applies to CGLIB prox-
ies). This can add slight performance gains, but should be used judiciously.

proxyTargetClass Whether to proxy the target class, rather than implementing an interface. You
must use CGLIB for this (i.e., the CGLIB JAR files must be deployed).
In most ProxyFactoryBean configurations, you will need to be concerned with
only a few of these properties. The three properties you will probably use most
often are target, proxyInterfaces, and interceptorNames.

Using ProxyFactoryBean 123

 The target property defines what bean should be the target object of the gen-
erated proxy object. This is the object that is being advised. In this example:

<bean id="courseServiceTarget" class="com.springinaction.
 training.service.CourseServiceImpl"/>

<bean id="courseService"
 class="org.springframework.aop.framework.ProxyFactoryBean">
 <property name="target">
 <ref bean="courseServiceTarget"/>
 </property>
 …
</bean>

As you can see, an instance of CourseServiceImpl is the target object of our
ProxyFactoryBean. However, in this configuration, both beans can be obtained
from our BeanFactory with a call to getBean(). Both beans can also be wired to
other beans with your application. If you want to avoid exposing the target class
to other beans in your application, you can declare it as an inner bean of the
ProxyFactoryBean:

<bean id="courseService"
 class="org.springframework.aop.framework.ProxyFactoryBean">
 <property name="target">
 <bean class"com.springinaction.training.
 service.CourseServiceImpl"/>
 </property>
 …
</bean>

Now the ProxyFactoryBean is the only CourseService bean that can be obtained
from the BeanFactory. This can help prevent you from accidentally wiring an
unadvised CourseService object to one of your beans.

 The proxyInterfaces property is a list of interfaces that should be imple-
mented by the beans created by the factory. For example, suppose you set this
property as follows:

<property name="proxyInterfaces">
 <value>com.springinaction.training.service.CourseService</value>
</property>

This would let the ProxyBeanFactory know that any bean it creates should also
implement the CourseService interface. You can supply a single interface as

➥

➥

above or multiple interfaces with a <list> element.
 The interceptorNames property is a list of advisor or advice bean names that

should be applied to the target bean. The ordering of the list is important as this

124 CHAPTER 3
Creating aspects

dictates the order in which the advice will be applied. Returning to our Course-
Service example, here is how we would apply a series of advice beans to our
CourseServiceTarget bean:

<property name="proxyInterfaces">
 <list>
 <value>securityAdvice</value>
 <value>transactionAdvice</value>
 </list>
</property>

In this example, securityAdvice will be applied first, followed by transaction-
Advice. You can also include the bean name of your target bean in this list, but it
must the last one in the list.

<property name="proxyInterfaces">
 <list>
 <value>securityAdvice</value>
 <value>transactionAdvice</value>
 <value>courseServiceTarget</value>
 </list>
</property>

In this case, both advice beans will be applied, followed by an invocation of the tar-
get bean. Although this configuration is possible, it is better to configure the target
bean using the target property, simply because it is clearer.

3.6 Autoproxying

So far we have created our proxy objects using the ProxyFactoryBean class. This
works fine for small applications since there are not that many classes we want to
advise. But when we have several, sometimes dozens of classes we want to advise,
it becomes cumbersome to explicitly create every proxy.

 Luckily, Spring has an autoproxy facility that enables the container to gener-
ate proxies for us. We do so in a very Springy way—we configure a bean to do the
dirty work for us. Specifically, we create autoproxy creator beans. Spring comes
with two classes that provide this support: BeanNameAutoProxyCreator and
DefaultAdvisorAutoProxyCreator.

3.6.1 BeanNameAutoProxyCreator

BeanNameAutoProxyCreator generates proxies for beans that match a set of names.

This name matching is similar to the NameMethodMatcherPointcut discussed ear-
lier, as it allows for wildcard matching on both ends of the name. This is typically

Autoproxying 125

used to apply an aspect or a group of aspects uniformly across a set of beans that
follow a similar naming convention. For example, we may want to add a Perfor-
manceThresholdInterceptor to all of our service beans. This interceptor would
track how long each service method invocation lasts, and take action if this time
exceeds a given threshold. Listing 3.17 provides a sample of what this class would
look like.

package com.springinaction.training.advice;

import org.aopalliance.intercept.MethodInterceptor;
import org.aopalliance.intercept.MethodInvocation;

public class PerformanceThresholdInterceptor
 implements MethodInterceptor {

 private final long thresholdInMillis;

 public PerformanceThresholdInterceptor(long thresholdInMillis) {
 this.thresholdInMillis = thresholdInMillis;
 }

 public Object invoke(MethodInvocation invocation)
 throws Throwable {
 long t = System.currentTimeMillis();
 Object o = invocation.proceed();
 t = System.currentTimeMillis() - t;
 if (t > thresholdInMillis) {
 warnThresholdExceeded();
 }
 return o;
 }

 private void warnThresholdExceeded() {
 System.out.println(“Danger! Danger!”);
 }
}

Now we want to configure a BeanNameAutoProxyCreator that will apply this inter-
ceptor to all of our beans that end with Service. Listing 3.18 demonstrates how
we would do this.

Listing 3.17 PerformanceThresholdInterceptor

Configure threshold

Track
invocation
duration

Take action if
threshold exceeded

126 CHAPTER 3
Creating aspects

…
 <bean id="performanceThresholdInterceptor"
 class="com.springinaction.training.advice.
 PerformanceThresholdInterceptor”>
 <constructor-arg>
 <value>5000</value>
 </constructor-arg>
 </bean>

 <bean id="preformanceThresholdProxyCreator"
 class="org.springframework.aop.framework.
 autoproxy.BeanNameAutoProxyProxyCreator">

 <bean>
 <property name="beanNames">
 <list>
 <value>*Service</value>
 </list>
 </property>
 <property name="interceptorNames">
 <value>performanceThresholdInterceptor</value>
 </property>
 </bean>
…

The code in listing 3.17 will apply our interceptor to every method on every bean
with a name that ends in Service. Like ProxyFactoryBean, the interceptorNames
property can contain the bean names of interceptors, advice, or advisors. Keep in
mind that if the bean is an advisor or an interceptor, it will be applied to all meth-
ods in the proxied class. If it is an advisor, the advisor’s pointcut may cause the
advice to be applied differently to different beans.

 So when the proxy is created, what does it look like? The autoproxy framework
makes some assumptions about what interfaces the proxy should expose. Any
interfaces implemented by the target class will be exposed by the proxy object. If
the target class does not implement an interface, the same rules apply as when we
discussed ProxyFactoryBean—a subclass will be created dynamically.

3.6.2 DefaultAdvisorAutoProxyCreator

Listing 3.18 Configuring a BeanNameAutoProxyCreator

➥

The more powerful autoproxy creator is the DefaultAdvisorAutoProxyCreator.
All you need to do to make use of this class is to include it as a bean in your Bean-
Factory configuration. The magic of this class lies within its implementation of

Autoproxying 127

the BeanPostProcessor interface. After your beans’ definitions have been read in
by the ApplicationContext, the DefaultAdvisorAutoProxyCreator scours the con-
text for any advisors. It then applies these advisors to any beans that match the
advisor’s pointcut.

 It is important to point out this proxy creator only works with advisors. If you
remember, an advisor is a construct that combines a pointcut and advice. The
DefaultAdvisorAutoProxyCreator needs the advisors to let it know what beans it
should advise.

 Let’s take a look at a practical example of this approach. In the previous exam-
ple we applied a performance interceptor to all of our service objects. Listing 3.19
shows the same thing, only with a DefaultAdvisorAutoProxyCreator.

…
 <bean id="performanceThresholdInterceptor"
 class="com.springinaction.training.advice.
 PerformanceThresholdInterceptor">
 <constructor-arg>
 <value>5000</value>
 </constructor-arg>
 </bean>

 <bean id="advisor" class="org.springframework.aop.support.
 RegexpMethodPointcutAdvisor">
 <property name="advice">
 <bean class="performanceThresholdInterceptor"/>
 </property>
 <property name="pattern">
 <value>.+Service\..+</value>
 </property>
 </bean>

 <bean id="autoProxyCreator"
 class="org.springframework.aop.framework.
 autoproxy.DefaultAdvisorAutoProxyCreator"/>
…

When all of the bean definitions are read in, all the advisors in the BeanFactory
will be cut loose so they can apply their advice to any beans that match their

Listing 3.19 Configuring a BeanNameAutoProxyCreator

➥

➥

➥

pointcuts. (Remember the scene in Minority Report where the robotic spiders
where unleashed to find Tom Cruise? Well, the advisors are kind of like those spi-
ders, only much less creepy.) This allows you to really flex the power of pointcuts.

128 CHAPTER 3
Creating aspects

Instead of having to explicitly associate your advisors with anything, you can sim-
ply define them and have them automatically applied to any bean they are con-
figured to match. This is where the loose coupling of beans and their advice is
really achieved; you write your beans, you write your advice, and the container
plays matchmaker.

 But in the words of Peter Parker, with great power comes great responsibility.
When using the DefaultAdvisorAutoProxyCreator, you are giving up control of
explicitly wiring your advice. Because it is happening “automagically,” you must
make sure that your advisor’s pointcuts are as fine-grained as possible. This will
ensure your advice is applied precisely where you want it. The last thing you want
happening is to have advice applied to classes and methods where it was never
intended. This would lead to strange application behavior indeed. So when
using this class, make should you first have a sound understanding of Spring’s
AOP framework.

3.6.3 Metadata autoproxying

Spring also supports auto proxying driven by metadata. In this type of autoprox-
ying, the proxy configuration is determined by source-level attributes as opposed
to external configuration (e.g., an XML file). This is quite powerful since it keeps
the AOP metadata with the source code that is being advised, letting you keep
your code and configuration metadata in one place.

 The most common use for metadata autoproxying is for declarative transac-
tion support. Spring provides a powerful framework for declarative transactions
via its AOP framework. This offers the same capabilities as EJB’s declarative trans-
actions. Because this is such an important feature for enterprise development, we
cover this topic in depth in chapter 5.

3.7 Summary

AOP is a powerful complement to object-oriented programming. With aspects,
you can now group application behavior that was once spread throughout your
applications into reusable modules. You can then declaratively or programmati-
cally define exactly where and how this behavior is applied. This reduces code
duplication and lets your classes focus on their main functionality.

 Spring provides an AOP framework that lets you insert aspects around method

executions. You have learned how you can weave advice before, after, and around
a method invocation, as well as add custom behavior for handling exceptions.

Summary 129

 You also discovered that with Spring’s pointcut mechanism, you have several
choices of how to define where this advice is woven into your application. Typically
you will use one of Spring’s predefined static pointcuts. With these, you define
your pointcuts based on your bean’s class and method names. If this does not suit
your needs, you are free to implement your own static or dynamic pointcuts.

 And on top of adding advice around method invocations, you also discovered
introductions. Using an introduction enables you to add new methods and state to
your application objects. You learned that introductions allow you to create com-
posite objects dynamically, giving you the same power as multiple inheritance.

 Finally, you saw that Spring provides several convenient ways to create your
proxied objects. With the ProxyFactoryBean, you have complete control over how
your proxies are created. You also have more flexible means at your disposal
when you use autoproxying. Specifically, the DefaultAdvisorAutoProxyCreator
lets you create advice throughout your application with minimal configurations.

 So now you know how to wire your beans and apply advice. In the coming
chapters, you will learn how you can apply these tools to help you more easily
develop enterprise applications.

Part 2

Spring in the business layer

II n part 1, you learned about Spring’s core container and its support for
inversion of control (IoC) and aspect-oriented programming (AOP). In part 2,
you’ll learn how to apply IoC and AOP to implement business layer function-
ality for your application.

 Most applications ultimately persist business information in a relational
database. Chapter 4, “Hitting the database,” will guide you in using Spring’s
support for data persistence. You’ll be introduced to Spring’s JDBC support,
which helps you remove much of the boilerplate code associated with JDBC.
You’ll also see how Spring integrates with several popular object-relational
mapping frameworks, such as Hibernate, JDO, and iBATIS.

 Once you are persisting your data, you’ll want to ensure that its integrity is
preserved. In chapter 5, “Managing transactions,” you’ll learn how Spring
enables you to declaratively apply transactional policies to your application
objects using AOP. You’ll see that Spring affords EJB-like transaction support
to plain Java objects and even goes beyond EJB’s transactional capabilities.

 In chapter 6, “Remoting,” you’ll learn how to expose your application
objects as remote services. You’ll also see how to transparently access remote
services as though they are any other object in your application. Remoting
technologies explored will include RMI, Hessian/Burlap, EJB, web services,
and Spring’s own HttpInvoker.

 Chapter 7, “Accessing enterprise services,” will wrap up the discussion of

Spring in the business layer by showcasing some of Spring’s support for common
enterprise services. In this chapter, you’ll learn how to use Spring to send mes-
sages using JMS, to access objects in JNDI, to send e-mails, and to schedule tasks.

Hitting the database
This chapter covers
■ Defining Spring’s overall persistence support
■ Configuring database resources in your

application
■ Simplifying JDBC code using Spring’s JDBC

framework
■ Integrating with third-party ORM frameworks
133

134 CHAPTER 4
Hitting the database

With the core of the Spring container now under your belt, it’s time to put it to work
in real applications. A perfect place to start is with a requirement of nearly any
enterprise application: persisting data. Each and every one of us has probably dealt
with database access in an application in the past. In doing so, you know that data
access has lots of pitfalls. We have to initialize our data access framework, manage
resources, and handle various exceptions. If we get any of this wrong, we could
potentially corrupt or delete valuable company data. For those who don’t know yet,
that is a Bad Thing.

 Since we strive for Good Things, we turn to Spring. Spring comes with a family
of data access frameworks that integrate with a variety of data access technologies.
Whether you are persisting your data via direct JDBC, Java Data Objects (JDO), or
an object/relational mapping (ORM) tool like Hibernate, Spring removes the
tedium of data access from your persistence code. Instead, you can lean on Spring
to handle the low-level data-access work for you so that you can turn your atten-
tion to managing your application’s data.

4.1 Learning Spring’s DAO philosophy

Before we jump into Spring’s different DAO frameworks, let’s talk about Spring’s
DAO support in general. From the first section, you know that one of
Spring’s goals is to allow you to develop applications following the sound
object-oriented (OO) principle of coding to interfaces. Well, Spring’s data access
support is no exception.

 DAO stands for data access object, which perfectly describes a DAO’s role in an
application. DAOs exist to provide a means to read and write data to the database.
They should expose this functionality through an interface by which the rest of
the application will access them. Figure 4.1 shows the proper approach to design-
ing your data access tier.

 As you can see, the service objects are accessing the DAOs through interfaces.
This has a couple of advantages. First, it makes your service objects easily testable
since they are not coupled to a specific data access implementation. In fact, you
can create mock implementations of these data access interfaces. That would
allow you to test your service object without ever having to connect to the data-
base, which would significantly speed up your unit tests.

 In addition, the data access tier is accessed in a persistence technology-agnos-

tic manner. That is, the data access interface does not expose what technology it
is using to access data. Instead, only the relevant data access methods are
exposed. This makes for a flexible application design. If the implementation

Learning Spring’s DAO philosophy 135

details of the data access tier were to leak into other parts of the application, the
entire application becomes coupled with the data access tier, leading to a rigid
application design.

 One way Spring helps you insulate your data access ties from the rest of your
application is by providing you with a consistent exception hierarchy that is used
across all of its DAO frameworks.

4.1.1 Understanding Spring’s DataAccessException

Spring’s DAO frameworks do not throw technology-specific exceptions, such
as SQLException or HibernateException. Instead, all exceptions thrown are
subclasses of the technology-agnostic org.springframework.dao.DataAccess-

Exception. This enables your data access interfaces to throw Spring’s general
DataAccessException instead of implementation-specific exceptions that would
force other application layers to catch them and thus become coupled to a partic-
ular persistence implementation. In fact, you can intermingle multiple persis-
tence technologies within the same application without your service objects even
knowing it.

 Since DataAccessException is the root of all Spring DAO exceptions, there are
a couple of important things to know.

You are not forced to handle DataAccessExceptions
DataAccessException is a RuntimeException, so it is an unchecked exception.
This means that your code will not be required to handle these exceptions when
they are thrown by the data access tier. This follows the general Spring philoso-
phy that checked exceptions can lead to extraneous catch or throws clauses

Figure 4.1
Service objects should
depend on an interface
to access data.
throughout your code, cluttering things up. This is especially true for data access
exceptions. Since these are quite often unrecoverable (e.g., unable to connect to
a database, invalid column name, etc.), you are not forced to try to handle these.

136 CHAPTER 4
Hitting the database

Instead, you can catch the exceptions if recovery is possible and let others bubble
up the call stack.

 Also, DataAccessException is not only a RuntimeException, but it subclasses
Spring’s NestedRuntimeException. This means that the root Exception is always
available via NestedRuntimeException’s getCause() method. So even though you
do not have to handle technology-specific exceptions, they are always available if
you need them, so no information is ever lost.

Spring classifies exceptions for you
In a perfect world, our data access APIs would always throw very meaningful
exceptions. We don’t know about you, but most of us are a long way from utopia. If
you are using JDBC, there is a greater than zero chance you will eventually get a
generic SQLException with a vendor-specific error. JDO has its own exception
hierarchy, as do all of the other persistence technologies that Spring supports. As
we said before, we do not want to expose these to the rest of our application.

 Fortunately, Spring understands each of these technology-specific exceptions.
It even understands database vendors’ error codes. Because Spring can interpret
the meaning of many of these exception, it can rethrow one of the more specific
exceptions in its own exception hierarchy. As table 4.1 illustrates, Spring’s DAO
framework comes with a rich hierarchy exception.

Table 4.1 Spring’s DAO exception hierarchy

Exception Is thrown when…

CleanupFailureDataAccessException An operation completes successfully, but an excep-
tion occurs while cleaning up database resources
(e.g., closing a Connection).

DataAccessResourceFailureException A data access resource fails completely, such as not
being able to connect to a database.

DataIntegrityViolationException An insert or update results in an integrity violation,
such as a violation of a unique constraint.

DataRetrievalFailureException Certain data could not be retrieved, such as not find-
ing a row by primary key.

DeadlockLoserDataAccessException The current process was a deadlock loser.

IncorrectUpdateSemanticsData-
AccessException

When something unintended happens on an update,
such as updating more rows than expected. When
this exception is thrown, the operation’s transaction

has not been rolled back.

continued on next page

Learning Spring’s DAO philosophy 137

Since Spring’s DAO exception hierarchy is so fine-grained, your service objects
can select exactly what kind of exceptions they want to catch and which ones they
want to let continue up the call stack. For example, a DataAccessResourceFailure-
Exception signals a critical problem—your application cannot connect to its data
store. You probably want to catch this and start ringing some alarms (metaphori-
cally speaking). On the other hand, a DataRetrievalFailureException is not as
critical and might possibly be a user error. Catching this exception would allow
you to possibly give the user a helpful message.

 So we can now properly handle exceptions thrown by our data access tools.
Now let’s see how to actually connect to the database.

4.1.2 Working with DataSources

In order to execute any JDBC operation on a database, you need a Connection.
In Spring’s DAO frameworks, Connection objects are obtained through a Data-
Source. Spring provides several options for making a DataSource available to
your application.

Getting a DataSource from JNDI

InvalidDataAccessApiUsageException A data access Java API is used incorrectly, such as
failing to compile a query that must be compiled
before execution.

InvalidDataAccessResourceUsage-
Exception

A data access resource is used incorrectly, such as
using bad SQL grammar to access a relational data-
base.

OptimisticLockingFailureException There is an optimistic locking failure. This will be
thrown by ORM tools or by custom DAO implementa-
tions.

TypeMismatchDataAccessException There is a mismatch between Java type and data
type, such as trying to insert a String into a
numeric database column.

UncategorizedDataAccessException Something goes wrong, but a more specific exception
cannot be determined.

Table 4.1 Spring’s DAO exception hierarchy (continued)

Exception Is thrown when…
Quite often Spring applications will be running within a J2EE application server
or even a web server like Tomcat. One thing these servers can provide is a Data-
Source via JNDI. With Spring, we treat this we would any other service object in

138 CHAPTER 4
Hitting the database

our application—as a Spring bean. In this case, we use the JndiObjectFactory-
Bean. All we need to do is configure it with the JNDI name of our DataSource:

<bean id="dataSource"
 class="org.springframework.jndi.JndiObjectFactoryBean">
 <property name="jndiName">
 <value>java:comp/env/jdbc/myDatasource</value>
 </property>
</bean>

We have now wired in our server’s DataSource and its connection pooling facility.
But what if we are not running within a server that provides this?

Creating a DataSource connection pool
If we are running our Spring container in an environment where a DataSource is
not already present and we want the benefits of connection pooling, we can still
provide this. All we need is a connection pooling bean that implements Data-
Source. A good example of this would be the BasicDataSource class from the
Jakarta Commons DBCP1 project. Since all of its properties are exposed through
setter methods, we would configure it like we would any other Spring bean:

<bean id="dataSource"
 class="org.apache.commons.dbcp.BasicDataSource">
 <property name="driver">
 <value>${db.driver}</value>
 </property>
 <property name="url">
 <value>${db.url}</value>
 </property>
 <property name="username">
 <value>${db.username}</value>
 </property>
 <property name="password">
 <value>${db.password}</value>
 </property>
</bean>

We now have a DataSource with connection pooling independent of an applica-
tion server.

Using a DataSource while testing
Since making code easily testable is central to Spring’s philosophy, it would be a
shame if we could not unit-test our data access code. Fortunately, Spring comes
1 Jakarta Commons DBCP is an open source database connection pool. You can learn more about this
project and download it at http://jakarta.apache.org/commons/dbcp/.

Learning Spring’s DAO philosophy 139

with a very lightweight DataSource implementation specifically for this: Driver-
ManagerDataSource. This class can easily be configured and used with a unit test
or suite of unit tests.

DriverManagerDataSource dataSource = new DriverManagerDataSource();
dataSource.setDriverClassName(driver);
dataSource.setUrl(url);
dataSource.setUsername(username);
dataSource.setPassword(password);

You now have a DataSource to use when testing your data access code.
 We can connect to the database. Now let’s take a look at the overall design

of Spring’s DAO frameworks and how they make using persistence technolo-
gies easier.

4.1.3 Consistent DAO support

You have probably traveled by plane before. If so, you will surely agree that one of
the most important parts of traveling is getting your luggage from point A to
point B. There are lots of steps to this process. You have to drop it off at the
counter. Then it has to go through security and then be placed on the plane. If
you need to catch a connecting flight, your luggage needs to be moved as well.
When you arrive at your final destination, the luggage has to be removed from
the plane and placed on the carousel. Finally, you go down to the baggage claim
area and pick it up.

 As we said, there are many steps to this process. But you are only actively
involved in a couple of those steps. The carrier itself is responsible for driving the
process. You are only involved when you need to be; the rest is just “taken care of.”
And believe or not, this mirrors a very powerful design pattern: the template
method pattern.

 A template method defines the skeleton of a process. In our example, the pro-
cess is moving luggage from departure city to arrival city. The process itself is
fixed; it never changes. The overall sequence of events for handling luggage
occurs the same way every time: luggage is checked in, luggage is loaded on the
plane, etc. Some steps of the process are fixed as well. That is, some steps happen
the same way every time. When the plane arrives at its destination, every piece of
luggage is unloaded one at a time and placed on a carousel to be taken to bag-
gage claim.
 But at certain points, the process delegates to other collaborators to fill in
some implementation-specific details. This is the part of the process that is vari-
able. For example, the handling of luggage starts with a passenger checking in

140 CHAPTER 4
Hitting the database

the luggage at the counter. This part of the process always has to happen at the
beginning, so its sequence in the process is fixed. But each passenger’s luggage
check-in is different. The implementation of this process is determined by the
passenger. In software terms, a template method delegates the implementation-
specific portions of the process to an interface. Different implementations of this
interface define specific implementations of this portion of the process.

 Spring applies this pattern to data access. No matter what technology we are
using, certain data access steps are required. For example, we always need to
obtain a connection to our data store and clean up resources when we are done.
These are the fixed steps in a data access process. But each data access implemen-
tation we write is slightly different. We query for different objects and update the
data in different ways. These are the variable steps in a data access process.

 Spring separates the fixed and variant parts of the data access process into two
distinct classes: templates and callbacks. Templates manage the fixed part of the
process while callbacks are where you fill in the implementation details.
Figure 4.2 shows the responsibilities of both of these classes.

 As you can see in figure 4.2, Spring’s template classes handle the invariant
parts of data access—controlling transactions, managing resources, and handling
exceptions. Implementations of the callback interfaces define what is specific to
your application—creating statements, binding parameters, and marshalling
result sets. In practice, this makes for a very elegant framework because all you
have to worry about is your data access logic.

 But that is not where these frameworks end. On top of the template-callback
design, each framework provides a support class meant to be subclassed by your
own data access classes. The relationship between your class, the support class,
and the template class is illustrated in figure 4.3.

 The support classes already have a property for holding a template class, so
you will not have to create this property for each of your DAO classes. Plus, each
support class allows you to get direct access to whatever class is used to communicate
Figure 4.2 Relationship between persistence APIs, template class, DAO support
class, and your DAO class

Using JDBC with Spring 141

with the database. For instance, the JdbcDaoSupport class contains a getConnection()
method for obtaining a Connection object. You would do this if you needed to
execute an operation independent of Spring’s JDBC framework.

 One other benefit you get by subclassing these support classes is that they each
implement the InitializingBean interface. This means that the Spring container
notifies them after they have been configured. If any of your DAO classes require
special initialization after they have been configured, all you have to do is over-
ride the initDao() method.

 As we cover each technology separately, we will go over each of these template
and support classes in depth. And what better technology to start with than the
granddaddy of them all, JDBC.

4.2 Using JDBC with Spring

There are a lot of persistence technologies out there. Entity beans. Hibernate.
JDO. Despite this, there is a wealth of applications out there that are writing Java
objects to a database the old-fashioned way: they earn it. No, wait—that’s how
people make money. The tried-and-true method for persisting data is with good
old JDBC.

 And why not? JDBC does not require learning another framework’s query lan-
guage to master. It is built on top of SQL, which is the data access language. Plus,
you can more finely tune the performance of your data access when you use JDBC
than practically any other technology. And JDBC allows you to take advantage of
your database’s proprietary features where other frameworks may discourage or

Figure 4.3
Responsibilities of
Spring’s DAO
template and
callback classes
flat-out prohibit this.
 But, all is not sunny in the world of JDBC. With its power, flexibility, and other

niceties also comes, well, some not-so-niceties.

142 CHAPTER 4
Hitting the database

4.2.1 The problem with JDBC code

While JDBC gives you an API that works closely with your database, you are
responsible for handling everything related to accessing the database. This
includes managing database resources and handling exceptions.

 If you have ever written JDBC that inserts data into the database, the code in
listing 4.1 should look familiar.

public void insertPerson(Person person) throws SQLException {
 Connection conn = null;
 PreparedStatement stmt = null;

 try {
 conn = dataSource.getConnection();
 stmt = conn.prepareStatement("insert into person (" +
 "id, firstName, lastName) values (?, ?, ?)");
 stmt.setInt(0, person.getId().intValue());
 stmt.setString(1, person.getFirstName());
 stmt.setString(2, person.getLastName());
 stmt.executeUpdate();
 }
 catch(SQLException e) {
 LOGGER.error(e);
 }
 finally {
 try { if (stmt != null) stmt.close(); }
 catch(SQLException e) { LOGGER.warn(e); }

 try { if (conn != null) conn.close(); }
 catch(SQLException e) { LOGGER.warn(e); }
 }
}

Holy runaway code, Batman! That is roughly a 25-line method to insert a simple
object into a database. As far as database operations go, this is about as simple as
it gets. So why does it take this many lines to execute this? Actually, it doesn’t, but
to properly handle errors and resources, it does. It’s too bad that of these 25 lines,
only four are unique to our particular use case: inserting a Person object.
Listing 4.2 shows how updating a Person object would look strikingly similar.

Listing 4.1 Inserting data with JDBC

Declare
resources

Open
connection

Create
statement

Set
parameters

Execute statement

Handle
exceptions

Clean up
resources

Using JDBC with Spring 143

public void updatePerson(Person person) throws SQLException {
 Connection conn = null;
 PreparedStatement stmt = null;

 try {
 conn = dataSource.getConnection();
 stmt = conn.prepareStatement("update person " +
 "set firstName = ?, lastName = ? where id = ?");
 stmt.setString(0, person.getFirstName());
 stmt.setString(1, person.getLastName());
 stmt.setInt(2, person.getId().intValue());
 stmt.executeUpdate();
 }
 catch(SQLException e) {
 LOGGER.error(e);
 }
 finally {
 try { if (stmt != null) stmt.close(); }
 catch(SQLException e) { LOGGER.warn(e); }

 try { if (conn != null) conn.close(); }
 catch(SQLException e) { LOGGER.warn(e); }
 }
}

At first glance, listing 4.1 and listing 4.2 appear to be identical. They practically
are, except for those four critical lines where we create the statement and set the
parameters. Ideally, all we would have to write are these four lines and the rest
would be handled for us. After all, those four lines are the only distinguishing
lines of the method. The rest is just boilerplate code.

 What about getting data out of the database? That’s not too pretty either, as
listing 4.3 shows us.

public Set getAllPersons() throws SQLException {
 Connection conn = null;
 PreparedStatement stmt = null;
 ResultSet rs = null;

 try {

Listing 4.2 Updating data with JDBC

Listing 4.3 Reading data with JDBC

Declare
resources

Open
connection

Create
statement

Set
parameters

Execute statement

Handle
exceptions

Clean up
resources

Declare
resources

Open
connection
 conn = dataSource.getConnection();

 String sql = "select id, firstName, lastName from person";
 stmt = conn.prepareStatement(sql);
 rs = stmt.executeQuery();

Create
statement

Execute statement

144 CHAPTER 4
Hitting the database

 Set persons = new HashSet();
 while (rs.next()) {
 persons.add(new Person(rs.getInt("id"),
 rs.getString("firstName"), rs.getString("lastName")));
 }
 return persons;
 }
 catch(SQLException e) {
 LOGGER.error(e);
 throw e;
 }
 finally {
 try { if (rs != null) rs.close(); }
 catch(SQLException e) { LOGGER.warn(e); }

 try { if (stmt != null) stmt.close(); }
 catch(SQLException e) { LOGGER.warn(e); }

 try { if (conn != null) conn.close(); }
 catch(SQLException e) { LOGGER.warn(e); }
 }
}

That’s about as verbose as our previous example, maybe more. It’s like Pareto’s
Principle flipped on its head; 20 percent of the code is needed for this particular
method while 80 percent is boilerplate code. With our point made, we will end
the torture here and not make you look at any more of this nasty, nasty code.

 But the fact is that this boilerplate code is important. Cleaning up resources
and handling errors is what makes data access robust. Without it, errors would go
undetected and resources would be left open, leading to unpredictable code and
resource leaks. So not only do we need this code, we also need to make sure this
code is correct. This is all the more reason to use a framework where this code is
written right and written once.

 That is what Spring’s JDBC framework brings to the table.

4.2.2 Using JdbcTemplate
Spring’s JDBC framework will clean up your JDBC code by shouldering the bur-
den of resource management and error handling. This leaves you free to write
the statements and queries to get your data to and from the database.

 As we explained before, all of Spring’s data access frameworks incorporate a

Iterate over ResultSet
Return results

Handle
exceptions

Clean up
resources
template class. In this case, it is the JdbcTemplate class. All a JdbcTemplate needs
to do its work is a Datasource, which makes creating an instance simple enough:

JdbcTemplate template = new JdbcTemplate(myDataSource);

Using JDBC with Spring 145

And since all of Spring’s DAO template classes are thread-safe, we only need one
JdbcTemplate instance for each DataSource in our application. To make use of the
JdbcTemplate, each of your DAO classes needs to be configured with a Jdbc-
Template instance like so:

public class StudentDaoJdbc implements StudentDao {
 private JdbcTemplate jdbcTemplate;

 public void setJdbcTemplate(JdbcTemplate jdbcTemplate) {
 this.jdbcTemplate = jdbcTemplate;
 }
…
}

This makes for easy configuration since each of your DAO classes can be config-
ured with the same JdbcTemplate, as listing 4.4 demonstrates.

<bean id="jdbcTemplate"
 class="org.springframework.jdbc.core.JdbcTemplate">
 <property name="dataSource"><ref bean="dataSource"/></property>
</bean>

<bean id="studentDao" class="StudentDaoJdbc">
 <property name="jdbcTemplate"><ref bean="jdbcTemplate"/></property>
</bean>

<bean id="courseDao" class="CourseDaoJdbc">
 <property name="jdbcTemplate"><ref bean="jdbcTemplate"/></property>
</bean>

Now we are ready to start accessing the database. To start off, let’s take a look at
how to execute database writes using the JbdcTemplate class.

Writing data
Earlier we discussed how each of Spring’s DAO template classes works in concert
with callback interfaces. The JdbcTemplate uses several of these callbacks when
writing data to the database. The usefulness you will find in each of these inter-
faces will vary. We will first introduce two of the simpler interfaces, and then we
will show you some shortcuts provided by the JdbcTemplate class.

 The first callback we will explore is PreparedStatementCreator. As the name

Listing 4.4 Wiring a JdbcTemplate to DAO beans
suggests, implementers of this interface are responsible for creating a Prepared-
Statement. This interface provides one method:

146 CHAPTER 4
Hitting the database

PreparedStatement createPreparedStatement(Connection conn)
 throws SQLException;

When you implement this interface, you are responsible for creating and return-
ing a PreparedStatement from the Connection argument, but you don’t have to
worry about exception handling. An implementation that inserts a Person object
might look like the example in listing 4.5.

public class InsertPersonStatementCreator
 implements PreparedStatementCreator {

 public PreparedStatement createPreparedStatement(
 Connection conn) throws SQLException {
 String sql = "insert into person (id, first_name, last_name) " +
 "values (?, ?, ?)";
 return conn.prepareStatement(sql);
 }
}

Implementers of this interface will often implement another interface as well:
SqlProvider. By implementing this interface’s one method—getSql()—you
enable your class to provide SQL strings to the JdbcTemplate class. This is very
useful since the JdbcTemplate class can log every SQL statement it executes. List-
ing 4.6 illustrates what this would look like.

public class InsertPersonStatementCreator
 implements PreparedStatementCreator, SqlProvider {

 private final String sql =
 "insert into person (id, firstName, lastName) " +
 "values (?, ?, ?)";

 public PreparedStatement createPreparedStatement(
 Connection conn) throws SQLException {
 return conn.prepareStatement(sql);
 }

 public String getSql() { return sql; }

Listing 4.5 Creating a PreparedStatement with a PreparedStatementCreator

Listing 4.6 Implementing SqlProvider in a PreparedStatementCreator
}

Using JDBC with Spring 147

Now whenever the JdbcTempate calls on this class to create a PreparedStatment, it
will also be able to log the executed SQL. This can prove invaluable during devel-
opment and debugging.

 The complement to PreparedStatementCreator is PreparedStatementSetter.
Classes that implement this interface receive a PreparedStatement and are respon-
sible for setting any of the parameters, as the single method’s signature indicate:

void setValues(PreparedStatement ps) throws SQLException;

Continuing with the example above, setting parameters to insert a Person object
would look like this:

…
private Person person;

public void setValues(PreparedStatement ps) throws SQLException {
 ps.setInt(0, person.getId().intValue());
 ps.setString(1, person.getFirstName());
 ps.setString(2, person.getLastName());
}
…

Again, all you have to worry about is setting the parameters. Any exceptions will be
handled by the JdbcTemplate class. Notice a pattern here? You are only doing what
is necessary to define how to insert a Person object; the framework is doing the rest.

 As we mentioned earlier, these are fairly simple callbacks. The former creates
a PreparedStatement and the latter sets the parameters. It almost seems like over-
kill to create a class for something so trivial. Fortunately the JdbcTemplate class
provides some convenience methods to simplify this.

 Since many updates consist of creating a PreparedStatement from a SQL string
and then binding parameters, JdbcTemplate provides an execute(String sql,
Object[] params) method that facilitates just that. You would use this method in
this way:

String sql = "insert into person (id, firstName, lastName) " +
 "values (?, ?, ?)";
Object[] params = new Object[] { person.getId(),
 person.getFirstName(),
 person.getLastName() };
return jdbcTemplate.update(sql, params);

Ahhh! Now we are getting to some nice, concise code! Behind the scenes, the
JdbcTemplate class creates a PreparedStatementCreator and PreparedStatement-

Setter. But now we don’t have to worry about that. We just supply the SQL and
the parameters.

148 CHAPTER 4
Hitting the database

 One improvement we can make is to use the JdbcTemplate method that also
accepts the JDBC types of our parameters, update(String sql, Object[] args,
int[] argTypes). This provides type safety, which allows for better support when
setting parameters to null. Let’s take a look at how we would use this method.
This time, listing 4.7 will examine the execute() of our method in the context of
one our DAO methods.

public int insertPerson(Person person) {

 String sql = "insert into person (id, firstName, lastName) " +
 "values (?, ?, ?)";
 Object[] params = new Object[] { person.getId(),
 person.getFirstName(),
 person.getLastName() };
 int[] types =
 new int[] { Types.INTEGER, Types.VARCHAR, Types.VARCHAR };
 return jdbcTemplate.update(sql, params, types);
}

Now we have the simplicity for which we have been searching. Four statements:
declare the SQL, declare the parameters, declare the types, execute the opera-
tion. Spring does the rest. That’s leverage. For the vast majority of your database
writes, the method in listing 4.7 will serve as a perfect template.

 But what if we want to update more than one row? Suppose we also have a
method that supports adding multiple Person objects en masse. In that case, we
would use the BatchPreparedStatementSetter. This interface has two methods:

setValues(PreparedStatement ps, int i) throws SQLException;
int getBatchSize();

getBatchSize() tells the JdbcTemplate class how many statements to create.
This also determines how many times setValues() will be called. Listing 4.8
shows how you would use this in conjunction with the JdbcTemplate.batch-
Update() method.

public int[] updatePersons(final List persons) {
 String sql = "insert into person (id, firstName, lastName) " +

Listing 4.7 Inserting data using the JdbcTemple.execute method

Listing 4.8 Using a BatchPreparedStatementCreator to insert multiple objects

Create
SQL

Set
parameters

Set
datatypes

Execute
statement

Create

 "values (?, ?, ?)";
 BatchPreparedStatementSetter setter = null;
 setter = new BatchPreparedStatementSetter() {

SQL

Using JDBC with Spring 149

 public int getBatchSize() {
 return persons.size();
 }

 public void setValues(PreparedStatement ps, int index)
 throws SQLException {
 Person person = (Person) persons.get(index);
 ps.setInt(0, person.getId().intValue());
 ps.setString(1, person.getFirstName());
 ps.setString(2, person.getLastName());
 }

 };
 return jdbcTemplate.batchUpdate(sql, setter);
}

So if your JDBC driver supports batching, the updates will be batched, creating
more efficient database access. If not, Spring will simulate batching, but the state-
ments will be executed individually.

 So now you have seen how to write data to the database. Let’s take a look at
how we can use Spring to help get data out of the database.

Reading data

As we saw in our JDBC code without Spring, when we queried the database we had
to iterate through the ResultSet. Spring recognizes that this is a step that is
always required for queries, so it handles that for us. Instead, we simply need to
tell Spring what to do with each row in the ResultSet. We do so through the Row-
CallbackHandler interface by implementing its only method:

void processRow(java.sql.ResultSet rs)

This method is called for each row in our ResultSet. Going back to our Person-
Dao, we are likely to have method to retrieve a Person object by its id. Listing 4.9
shows how we would do so using a RowCallbackHandler.

public Person getPerson(final Integer id) {
 String sql = "select id, first_name, last_name from person " +
 "where id = ?";

Listing 4.9 Executing a query using RowCallbackHandler

Define number of
batch statements

Set
parameters

Execute batch
statement

Create
SQL
 final Person person = new Person();
 final Object[] params = new Object[] { id };
 jdbcTemplate.query(sql, params, new RowCallbackHandler() {

Create object being queried
Create query parameters

150 CHAPTER 4
Hitting the database

 public void processRow(ResultSet rs) throws SQLException {
 person.setId(new Integer(rs.getInt("id")));
 person.setFirstName(rs.getString("first_name"));
 person.setLastName(rs.getString("last_name"));
 }
 });
 return person;
}

As you can see, we define our SQL and parameters as we did before. And since we
are now getting data from the database, we also supply a RowCallbackHandler that
knows how to extract the data from the ResultSet.

 There is also a subinterface you can implement that is useful for retrieving
multiple objects through a query. Suppose we want a method that retrieves all of
our Person objects. To do this we would implement ResultReader. Spring pro-
vides an implementation of this interface that does exactly what we need: Row-
MapperResultReader. But in order to use this class, we must discuss the RowMapper
interface first.

 The RowMapper interface is responsible for mapping a ResultSet row to an
object. To map a row to Person object, we would create a RowMapper like this:

class PersonRowMapper implements RowMapper {
 public Object mapRow(ResultSet rs, int index)
 throws SQLException {
 Person person = new Person();
 person.setId(new Integer(rs.getInt("id")));
 person.setFirstName(rs.getString("first_name"));
 person.setLastName(rs.getString("last_name"));
 return person;
 }
}

We now have a reusable class that can take a ResultSet row and create a Person
object. This can now be used in any Person query, as long as id, first_name, and
last_name columns are being selected as part of the query. Now let’s go back and
see how we would use this in our getAllPersons() method:

public List getAllPersons() {
 String sql = "select id, first_name, last_name from person";
 return jdbcTemplate.query(
 sql, new RowMapperResultReader(new PersonRowMapper()));
}

Process
query
results

Return queried object
Nice and tidy. Now that we have our reusable RowMapper object, listing 4.10 illus-
trates how we can clean up our getPerson() method from earlier.

Using JDBC with Spring 151

public Person getPerson(final Integer id) {
 String sql = "select id, first_name, last_name from person " +
 "where id = ?";
 final Person person = new Person();
 final Object[] params = new Object[] { id };
 List list = jdbcTemplate.query(sql, params,
 new RowMapperResultReader(new PersonRowMapper()));
 return (Person) list.get(0);
}

See, we told you that you would get great reuse from the RowMapper interface. In
fact, there is really no reason you should not encapsulate the extraction of
ResultSet data in exactly one RowMapper for each of your classes. You could con-
ceivably have dozens of query methods for a particular object, but you should
never need more than one RowMapper object.

 So far we have covered queries that pull data to create domain objects. But
what about queries that just return simple types, like int or String? JdbcTemplate
also contains some convenience methods for precisely this. For instance, here’s
how you would write a query to get the count of all Person objects:

public int getNumberOfPersons() {
 return jdbcTemplate.queryForInt("select count(*) from person");
}

Similarly, to execute a query to find the last name for a particular person id, we
would write a method like this:

public String getLastNameForId(Integer id) {
 String sql = "select last_name from person where id = ?";
 return (String) jdbcTemplate.queryForObject(
 sql, new Object[] { id }, String.class);
}

By now you must be enjoying seeing JDBC query methods that are not littered
with try-catch-finally blocks and ResultSet iterations. Now we are going to
turn our attention to one more area where Spring’s JDBC framework can help.
Let’s look at how to call stored procedures using JdbcTemplate.

Calling stored procedures
Sometimes we choose to execute our persistence operations as stored procedures

Listing 4.10 Executing a query using a RowMapper
in the database rather than SQL in our application. This may be due to perfor-
mance reasons, company policy, or just a matter of taste. Whatever the case,

152 CHAPTER 4
Hitting the database

Spring provides the same support for calling stored procedures as it does for exe-
cuting statements and queries. This time get the support by implementing
CallableStatementCallback.

 Let’s say we have a stored procedure in our application that is responsible for
moving all old student data to archive tables. Assuming this procedure is named
ARCHIVE_STUDENTS, listing 4.11 shows how we would access it.

public void archiveStudentData() {
 CallableStatementCallback cb = new CallableStatementCallback() {
 public Object doInCallableStatement(CallableStatement cs)
 throws SQLException{
 cs.execute();
 return null;
 }
 };
 jdbcTemplate.execute("{ ARCHIVE_STUDENTS }", cb);
}

Once again, we have all the benefits of resource management and exception han-
dling. All we have to do is define the name of our stored procedure and execute it.

 You should now have a good idea of how to put the JdbcTemplate class to work
for you. Now let’s take a look at how we can represent database operations as
objects themselves.

4.2.3 Creating operations as objects

In the examples we just covered, you learned how you write JDBC code in a much
cleaner fashion. But the code was still tightly coupled to SQL. This is not neces-
sarily a bad thing. But what if we want to write JDBC code in a more OO fashion?
Spring provides a way to actually model database operations as objects. This adds
another layer of insulation between your code and straight JDBC.

 Spring provides classes for both reading and writing data. As we work through
some examples of these, there are a couple of things you should know. First, these
database operation objects are thread-safe, meaning you need to create only one
instance per database operation. Second, any database operation object must be
compiled before being used. This lets the object know when to prepare the state-

Listing 4.11 Executing a stored procedure with CallableStatementCallback
ment so that it can be executed later. Not surprisingly, you compile a database oper-
ation object by calling the compile() method. We will demonstrate this practice in

Using JDBC with Spring 153

our examples. To start off, let’s see how we would create an object to write data to
the database.

Creating an SqlUpdate object

To create a reusable object for executing inserts or updates, you subclass the
SqlUpdate class. An object for inserting a Person object would look like this:

public class InsertPerson extends SqlUpdate {

 public InsertPerson(DataSource ds) {
 setDataSource(ds);
 setSql("insert into person (id, firstName, lastName) " +
 "values (?, ?, ?)";
 declareParameter(new SqlParameter(Types.NUMERIC));
 declareParameter(new SqlParameter(Types.VARCHAR));
 declareParameter(new SqlParameter(Types.VARCHAR));
 compile();
 }

 public int insert(Person person) {
 Object[] params = new Object[] {
 person.getId(),
 person.getFirstName(),
 person.getLastName()
 };
 return update(params);
 }
}

There are a couple of things you should notice in this example. First, we have to
supply our SqlUpdate object with a DataSource. It uses this to create a Jdbc-
Template (it uses a JdbcTemplate to do its work). Second, notice the three
declareParameter() calls after we configure the SQL. We need to call this method
for each of the parameters in our statement. Note that the order in which we issue
these statements is important; they must be issued in the same order that they
appear in the SQL.

 Finally, notice that we call compile() at the end of our constructor. As we men-
tioned, every database operation object must be compiled before it can be used.
By calling compile() in the constructor, we ensure that it will always be called
when an instance is created. Speaking of constructing these objects, you can keep
an instance of this class as an instance variable in your DAO class since all of these

objects are thread-safe.

 We would actually call this object like this:

154 CHAPTER 4
Hitting the database

private InsertPerson insertPerson;

public int insertPerson(Person person) {
 return updatePerson.insert(person);
}

Notice that we did not use a single JDBC API in either the InsertPerson object
or our insertPerson() method. There is no reference to a PreparedStatement or
Connection object to be found. This is the extra layer of abstraction we referred to
earlier. Now let’s take a look at how to create a query object.

Querying the database with a MappingSqlQuery
To model a query as an object, we subclass the MappingSqlQuery class like so:

private class PersonByIdQuery extends MappingSqlQuery {

 public PersonByIdQuery(DataSource ds) {
 super(ds, "select id, first_name, last_name from person " +
 "where id = ?");
 declareParameter(new SqlParameter("id", Types.INTEGER));
 compile();
 }

 public Object mapRow(ResultSet rs, int rowNumber)
 throws SQLException {
 Person person = new Person();
 person.setId((Integer) rs.getObject("id"));
 person.setFirstName(rs.getString("first_name"));
 person.setLastName(rs.getString("last_name"));
 return person;
 }
}

Again, we supply a DataSource to the constructor and we compile at the end of
the constructor. We use this object like this:

private PersonByIdQuery personByIdQuery;
…
public Person getPerson(Integer id) {
 Object[] params = new Object[] { id };
 return (Person) personByIdQuery.execute(params).get(0);
}

Once again, we interact very little with the JDBC APIs. If this type of design is
attractive to you, you may prefer modeling your database operations as objects.
But deciding to take this approach or to access the JdbcTemplate directly is more

of matter of taste. One approach is not inherently better than the other.

Using JDBC with Spring 155

4.2.4 Auto-incrementing keys

When you insert a row in the database, you typically assign it a primary key that
uniquely identifies that row. It is good practice to use a surrogate key for your pri-
mary key. That is, the primary key should have no business meaning but is instead
generated within your application. Spring provides a means to do this via the
DataFieldMaxValueIncrementer interface. This interface has three different meth-
ods for obtaining the next value to be used as a key: nextIntValue(), next-
LongValue(), and nextStringValue().

 We would use a DataFieldMaxValueIncrementer like this:

…
private DataFieldMaxValueIncrementer incrementer;

public void setIncrementer(
 DataFieldMaxValueIncrementer incrementer) {
 this.incrementer = incrementer;
}

public void insertPerson(Person person) {
 Integer id = new Integer(incrementer.nextIntValue());
 JdbcTemplate jdbcTemplate = new JdbcTemplate(dataSource);
 String sql = "insert into person (id, firstName, lastName) " +
 "values (?, ?, ?)";
 Object[] params = new Object[] { id,
 person.getFirstName(),
 person.getLastName() };
 jdbcTemplate.update(sql, params);

 // everything was successful
 person.setId(id);
}
…

We can then wire in an implementation of this interface. Spring comes with
implementations that hook into the sequence mechanism for Oracle, Postgre-
SQL, MySQL, and Hypersonic databases. You are free to write your own imple-
mentation as well.

 We have now covered the multitude of ways Spring’s JDBC framework can help
you write cleaner JDBC code. But as your applications grow larger and more com-
plex, JDBC can still become cumbersome even with this framework. To help man-
age the persistence complexities of large applications, you will need a persistence
tool. And as you will see, Spring provides great support for these tools as well.

156 CHAPTER 4
Hitting the database

4.3 Introducing Spring’s ORM framework support

When we were kids, riding a bike was fun, wasn’t it? We would ride to school in the
mornings. When school let out we would cruise to our best friend’s house. When
it got late and our parents were yelling at us for staying out past dark, we would
peddle home for the night. Gee, those days were fun.

 But then we grew up—and we needed more than a bike. Sometimes we have to
travel quite a distance to work. Groceries have to be hauled and ours kids need to
get to soccer practice. And if you live in Texas, air conditioning is a must! Our
needs have simply outgrown our bike.

 JDBC is the bike of the persistence world. It is great for what it does, and for
some jobs it works just fine. But as our applications become more complex, so do
our persistence requirements. We need to be able to map object properties to
database columns and have our statements and queries created for us, freeing us
from typing an endless string of question marks. We also need more sophisticated
features such as the following:

■ Lazy loading—As our object graphs become more complex, we sometimes
don’t want to fetch entire relationships immediately. To use a typical exam-
ple, suppose we are selecting a collection of PurchaseOrder objects, and
each of these objects contains a collection of LineItem objects. If we are
only interested in PurchaseOrder attributes, it makes no sense to grab the
LineItem data. This could be quite expensive. Lazy loading allows us to
grab data only as it is needed.

■ Eager fetching—This is the opposite of lazy loading. Eager fetching
allows you to grab an entire object graph in one query. So if we know we
need a PurchaseOrder object and its associated LineItems, eager fetch-
ing lets us get this from the database in one operation, saving us from
costly round-trips.

■ Caching—For data that is read-mostly (used often but changed infre-
quently), we don’t want to fetch this from the database every time it is used.
Caching can add a significant performance boost.

■ Cascading—Sometimes changes to a database table should result in
changes to other tables as well. Going back to our purchase order example,
it is reasonable that a LineItem object has an association with a Product

object. In the database, this is most likely represented as a many-to-many
relationship. So when a LineItem object is deleted, we also want to disasso-
ciate this LineItem from its Product object in the database.

Integrating Hibernate with Spring 157

Fortunately, there are frameworks out there that already provide these services.
The general term for these services is object/relational mapping (ORM). Using an
ORM tool for your persistence layer can save you literally thousands of lines of
code and hours of development time. This lets you switch your focus from writing
error-prone SQL code to addressing your application requirements.

 Spring provides integration for Sun’s standard persistence API JDO, as well as
the open source ORM frameworks Hibernate, Apache OJB, and iBATIS SQL Maps.
Spring’s support for each of these technologies is not as extensive as its JDBC sup-
port. This is not a poor reflection on Spring’s APIs, but rather a testament to how
much work each of these ORM frameworks does. With the ORM tool doing most
of the actual persistence, Spring provides integration points to these frameworks,
as well as some additional services:

■ Integrated transaction management
■ Exception handling
■ Thread-safe, lightweight template classes
■ Convenience support classes
■ Resource management

While we are going to cover Spring’s integration with all four of these ORM frame-
works, we will not go into the details of each specific framework. We will give an
explanation of their general behavior and some example configurations. If you
want to explore any of these frameworks in detail, a wealth of resources is available.

4.4 Integrating Hibernate with Spring

Hibernate is a high-performance, open source persistence framework that has
gained significant popularity recently. It provides not only basic object/relational
mapping but also all the other sophisticated features you would expect from a
full-featured ORM tool, such as caching, lazy loading, eager fetching, and distrib-
uted caching. You can learn more about it in Hibernate in Action from Manning or
at the Hibernate web site http://www.hibernate.org.

4.4.1 Hibernate overview

You configure how Hibernate maps your objects to a relational database through
XML configuration files. For an example of how this is done, let’s examine how we

would map the Student class from our Spring Training application. First, let’s
examine the Student class, shown in listing 4.12.

158 CHAPTER 4
Hitting the database

import java.util.Set;

public class Student {

 private Integer id;
 private String firstName;
 private String lastName;
 private Set courses;

 public Integer getId() { return id; }
 public void setId(Integer id) { this.id = id; }

 public String getFirstName() { return firstName; }
 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getLastName() { return lastName; }
 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

 public Set getCourses() { return courses; }
 public void setCourses(Set courses) { this.courses = courses; }
}

Typically, each persistent class will have a corresponding XML mapping file that
ends with the extension “.hbm.xml.” Let’s take a look at the mapping file for the
Student class. By convention, we would name this file Student.hbm.xml, which is
shown in listing 4.13.

<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping
 PUBLIC "-//Hibernate/Hibernate Mapping DTD//EN"
 "http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd">

<hibernate-mapping>

 <class name="org.springinaction.training.model.Student">

 <id name="id">

Listing 4.12 Student.java

Listing 4.13 Student.hbm.xml Hibernate mapping file

Define
class being
mapped
 <generator class="assigned"/>
 </id>

Map primary key

Integrating Hibernate with Spring 159

 <property name="sex"/>
 <property name="weight"/>

 <set name="courses" table="transcript">
 <key column="student_id"/>
 <many-to-many column="course_id"
 class="org.springinaction.training.model.Course"/>
 </set>

 </class>

</hibernate-mapping>

In a typical application, you will have several of these files. These configuration
files are then read in to create a SessionFactory. A SessionFactory will last the
lifetime of your application and you will use it to obtain (what else?) Session
objects. It is with these Session objects that you will access the database. So
assuming that we have a configured SessionFactory, here is how we would get a
Student object by its primary key:

public Student getStudent(Integer id) throw HibernateException {
 Session session = sessionFactory.openSession();
 Student student = (Student) session.load(Student.class, id);
 session.close();
 return student;
}

This is a trivial example of using Hibernate that excludes exception handling.
But there is one thing you should take from this: Very little code is required to
execute this operation. In fact, we actually load the Student object in one line of
code. This is because Hibernate is doing all the work based on your mappings.
Since Hibernate is taking care of making persistence easier, Spring focuses on
making it easier to integrate with Hibernate. Let’s look at some of the ways
Spring does this.

4.4.2 Managing Hibernate resources

As we said, you will keep a single instance of a SessionFactory throughout the life
of your application. So it makes sense to configure this object through your Spring
configuration file. You do so using the Spring class LocalSessionFactoryBean:

Map
properties

Map
relationships
<bean id="sessionFactory"class="org.springframework.
 orm.hibernate.LocalSessionFactoryBean">➥

160 CHAPTER 4
Hitting the database

Of course the SessionFactory needs to know to which database to connect. The
preferred way to do this is to wire a DataSource to the LocalSessionFactoryBean:

<bean id="dataSource"
 class="org.springframework.jndi.JndiObjectFactoryBean">
 <property name="jndiName">
 <value>java:comp/env/jdbc/trainingDatasource</value>
 </property>
</bean>

<bean id="sessionFactory" class="org.springframework.
 orm.hibernate.LocalSessionFactoryBean">
 <property name="dataSource">
 <ref bean="dataSource"/>
 </property>
</bean>

You also manage how Hibernate is configured through the same LocalSession-
FactoryBean bean. Hibernate itself has dozens of properties by which you can
tweak its behavior. When used outside of Spring, Hibernate looks for a file named
hibernate.properties somewhere on the application class path for its configura-
tions. However, with Spring you do not have to manage these configurations in a
separate properties file. Instead, you can wire them to the hibernateProperties
property of the LocalSessionFactoryBean:

<bean id="sessionFactory" class="org.springframework.
 orm.hibernate.LocalSessionFactoryBean">
 <property name="hibernateProperties">
 <props>
 <prop key="hibernate.dialect">net.sf.hibernate.
 dialect.MySQLDialect</prop>
 </props>
 </property>
 …
</bean>

One last thing you must configure is which mapping files Hibernate should
read in. Remember when we created a Student.hbm.xml file? Well, we actually
have to tell Hibernate it needs to use this file. Otherwise it will not know how to
map the Student class to the database. Again, we can configure this through a
property of the LocalSessionFactoryBean bean. In this case, we use the mapping-
Resources property:

➥

➥

➥

<bean id="sessionFactory" class="org.springframework.
 orm.hibernate.LocalSessionFactoryBean">
 <property name="mappingResources">

➥

Integrating Hibernate with Spring 161

 <list>
 <value>Student.hbm.xml</value>
 <value>Course.hbm.xml</value>
 …
 </list>
 </property>
 …
 </bean>

This example works just fine for our small Spring Training application. But what
happens if your application grows and you have dozens, if not hundreds, of per-
sistent classes? It would be cumbersome to configure them all in this fashion.
Fortunately, Spring offers you an alternative. You can also configure the mapping-
DirectoryLocations property with a path that is a subset of your application’s
class path, and Spring will configure the SessionFactory with every *.hbm.xml it
finds in this path. For example, assuming that all the persistent classes we want to
configure are contained in the com.springinaction.training.model package, we
would configure our SessionFactory like this:

<bean id="sessionFactory" class="org.springframework.
 orm.hibernate.LocalSessionFactoryBean">
 <property name="mappingDirectoryLocations">
 <list>
 <value>classpath:/com/springinaction/training/model</value>
 </list>
 </property>
 …
</bean>

Now we have a fully configured SessionFactory and we didn’t even need to create
a second configuration file. Now all we need to do is create an object through
which we will access Hibernate. Like all of Spring’s DAO frameworks, this will be a
template class. In this case, it is the HibernateTemplate class. And because the
HibernateTemplate class is thread-safe, we can share this template class with mul-
tiple DAO objects:

<bean id="hibernateTemplate"
 class="org.springframework.orm.hibernate.HibernateTemplate">
 <property name="sessionFactory">
 <ref bean="sessionFactory"/>
 </property>
</bean>

<bean id="studentDao" class="com.springinaction.

➥

 training.dao.hibernate.StudentDaoHibernate">
 <property name="hibernateTemplate">
 <ref bean="hibernateTemplate"/>

➥

162 CHAPTER 4
Hitting the database

 </property>
</bean>

<bean id="courseDao" class="com.springinaction.
 training.dao.hibernate.CourseDaoHibernate">
 <property name="hibernateTemplate">
 <ref bean="hibernateTemplate"/>
 </property>
</bean>

And remember, if it becomes cumbersome to wire the template into each of your
DAO beans, you can always use Spring’s autowire facility to implicitly wire your DAO
beans. Now that you know how to wire a HibernateTemplate to your DAO objects,
we are ready to start using Hibernate.

4.4.3 Accessing Hibernate through HibernateTemplate

The template-callback mechanism in Hibernate is pretty simple. There is the
HibernateTemplate and one callback interface: HibernateCallback. And the
HibernateCallback interface has just one method:

Object doInHibernate(Session session)
 throws HibernateException, SQLException;

As you can see, the HibernateCallback interface is pretty straightforward. Now,
let’s put the HibernateTemplate to use. We’ll begin by getting an object from
the database:

public Student getStudent(final Integer id) {
 return (Student) hibernateTemplate.execute(
 new HibernateCallback() {
 public Object doInHibernate(Session session)
 throws HibernateException {
 return session.load(Student.class, id);
 }
 });
}

Since we are using an inner class, a little more code is required and is not quite as
clean as when we were not using Spring’s Hibernate support. But we can have it
both ways—clean code and Spring Hibernate support. The HibernateTemplate
class provides some convenience methods that implicitly create a HibernateCall-
back instance for you. All you have to do is call one of the convenience methods
and Spring’s framework does the rest. For example, here is how you would take

➥

advantage of one of these methods to accomplish the exact same thing as we did
earlier—get an object from the database:

Integrating Hibernate with Spring 163

public Student getStudent(Integer id) {
 return (Student) hibernateTemplate.load(Student.class, id);
}

Now we are getting somewhere! We now have the benefits of having Spring man-
aging our resources, converting proprietary exceptions, and, if we choose, adding
transactions. The previous example is how you will access Hibernate through the
Hibernate template the majority of the time. The HibernateTemplate class con-
tains a wealth of convenience methods for you to use. For example, to update a
Student object, this is all that would be required:

public void updateStudent(Student student) {
 hibernateTemplate.update(student);
}

Executing queries is not that much different. All we need to do is specify the
query (usually in Hibernate’s query language, HQL). Querying for students by
last name would look something like this:

public List findStudentsByLastName(String lastName) {
 return hibernateTemplate.find("from Student student " +
 "where student.lastName = ?",
 lastName, Hibernate.STRING);
}

Pretty straightforward, right? Even if you have never seen HQL before, this
code should be easy to follow. As we said before, Spring’s framework makes for
easy integration.

4.4.4 Subclassing HibernateDaoSupport
Spring’s Hibernate ORM framework also comes with the convenience class Hiber-
nateDaoSupport that your DAO classes can subclass:

public class StudentDaoHibernate extends HibernateDaoSupport
 implements StudentDao {
 …
}

If you opt for this design, you need to wire in a SessionFactory—the Hibernate-
DaoSupport class comes with this property. This class provides you with a convenience
method, getHibernateTemplate(), to easily get an instance of a HibernateTemplate.
It also has a getSession() and a closeSessionIfNecessary() method if, for some
reason, you need to perform a Hibernate operation without using a Hibernate-

Template. We are sure you will find these cases will be the exception (no pun
intended). So now you can see how easily you can integrate an ORM tool like
Hibernate. We think you will find the JDO integration just as easy.

164 CHAPTER 4
Hitting the database

4.5 Spring and JDO

JDO is Sun’s standard persistence specification. The important words from that
sentence are standard specification. Like EJB, JDO is a specification developed by
Sun that is implemented by different vendors. Currently there are more than ten
different vendor implementations. To learn more about JDO, you can visit Sun’s
site at http://java.sun.com/products/jdo.

4.5.1 Configuring JDO

Similar to Hibernate’s SessionFactory, JDO has a long-lived object that holds the
persistence configurations. This is the PersistenceManagerFactory. Since JDO is a
specification, PersistenceManagerFactory is the interface that vendors must
implement. Without using Spring, we would get an instance using the javax.
jdo.JDOHelper like so:

Properties props = new Properties();
// set JDO properties
PersistenceManagerFactory factory =
 JDOHelper.getPersistenceManagerFactory(props);

Some of these properties are defined by the JDO specification. For example,
javax.jdo.option.PersistenceManagerFactoryClass defines the class that is
implementing the PersistenceManagerFactory interface. Vendors are free to
define other properties as well.

 We configure a PersistenceManagerFactory in Spring using the LocalPersis-
tenceManagerFactoryBean. If your data store is a relational database, you can also
wire in your DataSource. Let’s take a look at listing 4.14 to see who you wire in a
LocalPersistenceManagerFactoryBean.

<bean id="dataSource"
 class="org.springframework.jndi.JndiObjectFactoryBean">
 <property name="jndiName">
 <value>java:comp/env/jdbc/trainingDatasource</value>
 </property>
</bean>

<bean id="persistenceManagerFactory" class="org.springframework.
 orm.jdo.LocalPersistenceManagerFactoryBean">

Listing 4.14 Wiring a LocalPersistenceManagerFactoryBean

Create
DataSource
bean

➥ Create

 <property name="dataSource">
 <ref bean="dataSource"/>
 </property>

LocalPersistence-
ManagerFactory-
Bean

Wire
DataSource

Spring and JDO 165

 <property name="jdoProperties">
 <props>
 <prop key="javax.jdo.option.
 PersistenceManagerFactoryClass">
 ${persistenceManagerFactoryClass}</prop>
 …
 </props>
 </property>
</bean>

Now we have a JDO PersistenceManagerFactory. The next step is to wire this into
a JdoTemplate:

<bean id="jdoTemplate"
 class="org.springframework.orm.jdo.JdoTemplate">
 <property name="persistenceManagerFactory">
 <ref bean="persistenceManagerFactory"/>
 </property>
</bean>

Since this has been drilled into your head by now, we will be brief. JdoTemplate is
the Spring’s JDO framework’s central class. It is the class we will use to access the
JDO framework. And this is the object we will wire into all of our DAO classes.

<bean id="studentDao" class="com.springinaction.
 training.dao.hibernate.StudentDaoJdo">
 <property name="jdoTemplate">
 <ref bean="jdoTemplate"/>
 </property>
</bean>

Of course, all of our JDO DAO classes must have a JdoTemplate property. We are
now up and running with JDO. It’s time to do some readin’ and writin’.

4.5.2 Accessing data with JdoTemplate

In Spring’s JDO framework, the template and callback classes are pretty easy to
master. There is only one method on the JdoTemplate class that you will you use
for accessing data: execute(JdoCallback). And the JdoCallback is likewise simple,
having just one method:

Object doInJdo(PersistenceManager pm) throws JDOException;

So if we want to find a Student object by last name, we would use the following:

Supply JDO
properties

➥
➥

➥

public Collection findPersonByLastName(final String lastName) {
 Collection persons = (Collection)
 jdoTemplate.execute(new JdoCallback() {

166 CHAPTER 4
Hitting the database

 public Object doInJdo(PersistenceManager pm) {
 Query q = pm.newQuery(
 Person.class, "lastName == " + lastName);
 return (Collection) q.execute();
 }
 });
 List list = new ArrayList();
 list.addAll(persons);
 return list;
}

As you can see, all of the JDO work is done within a simple inner class implemen-
tation of JdoCallback. You then pass this callback object to the execute() method
of your JdoTemplate instance, and Spring’s JDO framework does the rest. And like
the previous template classes, JdoTemplate also has a handful of convenience
methods. For example, you would retrieve a Student object by its id using the
getObjectById() method:

public Student getStudent(Integer id) {
 return (Student) jdoTemplate.getObjectById(Student.class, id);
}

We don’t want to disappoint you, but this is really about it. You execute your JDO
code within a callback object or take advantage of a JdoTemplate convenience
method and lean on Spring for resource management and exception handling.

4.6 Spring and iBATIS

Like Hibernate, iBATIS SQL Maps is an open source persistence framework. It
provides the standard ORM features like mapping complex objects and caching,
but is not quite as feature-rich as Hibernate. To learn more about SQL Maps, visit
the iBATIS web site at http://www.ibatis.com/sqlmaps.

 Spring actually supports two versions of SQL Maps: version 1.3 and the
most recent version, 2.0. It is easy to distinguish between which Spring classes
are meant for which version. All of the Spring classes that are meant for ver-
sion 1.3 are named SqlMapXxx, and the classes to be used with version 2.0 are
named SqlMapClientXxx. For example, you would use the SqlMapTemplate class
with 1.3 and SqlMapClientTemplate with 2.0. In all of our examples we will be
using version 2.0.

 Speaking of examples, let’s take a peek at how to configure SQL Maps.

Spring and iBATIS 167

4.6.1 Setting up SQL Maps

Similar to how you would with Hibernate, you configure SQL Maps with an XML
configuration file. Listing 4.15 shows how to configure the Student class.

<sql-map name="Student">
 <result-map name="result"
 class="org.springinaction.training.model.Student">
 <property name="id" column="id" columnIndex="1"/>
 <property name="firstName" column=" first_name"
 columnIndex="2"/>
 <property name="lastName" column=" last_name"
 columnIndex="3"/>
 </result-map>

 <mapped-statement name="getStudentById" result-map="result">
 select student.id, student.first_name, student.last_name
 from student
 where student.id = #value#
 </mapped-statement>

 <mapped-statement name="insertAccount">
 insert into student (id, first_name, last_name)
 values (#id#, #firstName#, #lastName#)
 </mapped-statement>
</sql-map>

Give this file a meaningful name, like Student.xml. The next step is to create an
iBATIS SQL Maps configuration file called sql-map-config.xml. Within this file,
we configure our Student.xml file:

<sql-map-config>
 <sql-map resource="Student.xml"/>
</sql-map-config>

Now that our configuration files are in place, we need to configure a SQLMapClient:

<bean id="sqlMapClient"
 class="org.springframework.orm.ibatis.SqlMapClientFactoryBean">
 <property name="configLocation">
 <value>sql-map-config.xml</value>
 </property>
 <property name="dataSource">

Listing 4.15 Configuring the Student class in iBATIS SQL Maps

Define Student mappings

Define
select
statement

Define insert
statement
 <ref bean="dataSource"/>
 </property>
</bean>

168 CHAPTER 4
Hitting the database

By now you should know the drill: create a template class and wire it to our
DAO objects:

<bean id="sqlMapClientTemplate"
 class=" org.springframework.orm.ibatis.SqlMapClientTemplate">
 <property name="sqlMapClient">
 <ref bean="sqlMapClient"/>
 </property>
</bean>

<bean id="studentDao"
 class="org.springinaction.training.model.StudentDaoSqlMap">
 <property name="sqlMapClientTemplate">
 <ref bean="sqlMapClientTemplate"/>
 </property>
</bean>

We have our DAO objects configured and ready to go. Now we need to use the
SqlMapClientTemplate to hit the database.

4.6.2 Using SqlMapClientTemplate

Like the previous ORM frameworks, using the template class and its callback is
pretty straightforward. In this case, we need to implement the SqlMapClient-
Callback’s method:

Object doInSqlMapClient(SqlMapExecutor executor)
 throws SQLException;

And just like all of the other template-callback pairs, the template manages the
nasty stuff and we worry about operating on the data. Here is an example of how
we would query for a Student using SqlMapClientCallback:

public Student getStudent(Integer id) throws DataAccessException {
 return getSqlMapClientTemplate().execute(
 new SqlMapClientCallback() {
 public Object doInSqlMapClient(SqlMapExecutor executor)
 throws SQLException {
 return (Student) executor.queryForObject("getPerson", id);
 }
 });
}

Once again, we end up with a method that is short and sweet. And believe it or

not, it can be even shorter and sweeter, because SqlMapClientTemplate comes
with a handful of convenience methods for common data access operations.
Using one of these methods, we would rewrite the above method as so:

Spring and OJB 169

public Student getStudent(Integer id) throws DataAccessException {
 return (Student) getSqlMapTemplate().executeQueryForObject(
 "getStudentById", id);
}

Writing data to the database is just as simple:

public void insertStudent(Student student)
 throws DataAccessException {
 getSqlMapTemplate().executeUpdate("insertStudent", student);
}

By now you should have noticed a theme in Spring’s ORM frameworks. Since
these persistence frameworks focus on their job (O/R mapping), the Spring inte-
gration points are simple. Once we have configured our ORM tool through
Spring’s XML files, accessing and using the tool become quite straightforward.

4.7 Spring and OJB

ObJectRelationalBridge, or OJB, is another open source ORM framework from
Apache. Like Hibernate, is has nearly every feature you would want in an ORM
tool, including lazy loading and distributed caching. You can learn more about
OJB at the OJB web site at http://db.apache.org/ojb.

 OJB supports several persistence APIs, including two standard APIs—JDO and
ODMG—as well as its own proprietary API. Spring integrates with OJB’s propri-
etary API, which is based around a PersistenceBroker class. Let’s see how we can
configure a PersistenceBroker using Spring.

4.7.1 Setting up OJB’s PersistenceBroker

Like the other two open source ORM frameworks we have already discussed, OJB
defines its mapping in an XML file. Typically, you will do this in a file named OJB-
repository.xml. This is also the file in which you tell OJB which DataSource to
use. Listing 4.16 illustrates how you would configure the Student class in OJB.

<descriptor-repository version="1.0">

 <jdbc-connection-descriptor jcd-alias="dataSource"
 default-connection="true"
 useAutoCommit="1"/>

Listing 4.16 Configuring the Student class in OJB

Configure
DataSource
 <class-descriptor
 class="org.springinaction.training.model.Student"
 table="Student">

Configure
Student
mapping

170 CHAPTER 4
Hitting the database

 <field-descriptor name="id" column="id"
 primarykey="true"
 autoincrement="true"/>

 <field-descriptor name="firstName" column="first_name"/>
 <field-descriptor name="lastName" column="last_name"/>
…
 </class-descriptor>
</descriptor-repository>

When the Spring OJB framework tries to access the database, it will use the Data-
Source whose bean name is the same as the jcd-alias property above. For exam-
ple, in the above OJB-repository.xml file, you would need to wire a DataSource
with the name dataSource.

 OJB also requires a properties file named OJB.properties for OJB-specific
properties. When you download OJB, you get an OJB.properties file with the
default values set. This file has a lot of properties with which you can configure
OJB. The only property you need to change to integrate Spring with OJB is the
ConnectionFactoryClass:

ConnectionFactoryClass=org.springframework.orm.ojb.
 support.LocalDataSourceConnectionFactory

To see how to configure the multitude of other OJB properties, see the OJB doc-
umentation. Now we are ready to wire our Spring beans. To integrate OJB, all we
need to do is wire a DataSource as described above:

<beans>
 <bean id="dataSource" …/>

 <bean id="studentDao"
 class="com.springinaction.training.dao.ojb.StudentDaoOjb">
 </bean>

 <bean id="ojbConfigurer" class="org.springframework.orm
 ojb.support.LocalOjbConfigurer"/>
</beans>

Notice that we did not wire a template class this time. This is because the Persis-
tenceBrokerTemplate class configures itself upon instantiation, so there is nothing
to configure. Listing 4.17 shows how StudentDao would be implemented using
OJB and the PersistenceBrokerDaoSupport class.

Configure
Student
mapping

➥

➥

Summary 171

public class StudentDaoOjb extends PersistenceBrokerDaoSupport
 implements StudentDao {

 public Student getStudent(final Integer id) {
 Criteria criteria = new Criteria();
 criteria.addLike("id", Integer.toString(id));
 return (Student)
 getPersistenceBrokerTemplate().getObjectByQuery(
 new QueryByCriteria(Student.class, criteria));
}

 public void create(Student student) {
 getPersistenceBrokerTemplate().store(student);
 }

}

As you see, we still get a template class to access the OJB framework. Since we sub-
classed the PersistenceBrokerDaoSupport class, the PersistenceBrokerTemplate
class is already available to us. Also, notice that we take advantage of some of the
convenience methods available in the PersistenceBrokerTemplate class, such as
getObjectByQuery() and store(). Like Spring’s other ORM integration frame-
works, its OJB support comes with a wealth of convenience methods that make
integration as painless as possible.

4.8 Summary

As you discovered, no matter what persistence technology you are using, Spring
aims to make this transparent to the rest of your application. The key way it does
this is by providing a consistent exception hierarchy across all of its DAO frame-
works. By interpreting technology-specific exceptions and vendor-specific error
codes, Spring allows you to throw generic DataAccessException subclasses so that
your persistence tier does not leak into the rest of your application.

 Of all the persistence technologies available, straight JDBC requires the most
work from your code. And as you learned, Spring provides a wealth of support
to help write better JDBC code. By providing a clean callback design, you are
able to write your JDBC statement and queries without the hassle of resource

Listing 4.17 Implementing PeristenceBrokerDaoSupport

Query
data

Write
data
management and exception handling. It also provides you with other support
facilities such as a framework for generating primary keys and custom error
code interpretation.

172 CHAPTER 4
Hitting the database

 Beyond plain JDBC, many applications use an ORM tool to handle more com-
plex persistence needs. You discovered that Spring has very capable support for
several of these frameworks: Hibernate, JDO, iBATIS SQL Maps, and Apache
OJB. By integrating Spring with your ORM tool, you can have a more unified con-
figuration, as well as take advantage of Spring’s resource management and excep-
tion handling.

 One thing noticeably missing from this chapter is transaction management.
That is because transaction management is so complex it warrants its own chap-
ter. In chapter 5, you will learn how you can integrate Spring’s rich transaction
support into each of these persistence technologies.

Managing transactions
This chapter covers
■ Integrating Spring with different transaction

managers
■ Managing transaction programmically
■ Using Spring’s declarative transactions
■ Describing transactions using annotations
173

174 CHAPTER 5
Managing transactions

Take a moment to recall your younger days. If you were like many children, you
spent more than a few carefree moments on the playground swinging on the swings,
traversing the monkey bars, getting dizzy while spinning on the merry-go-round,
and going up and down on the teeter-totter.

 The problem with the teeter-totter is that it is practically impossible to enjoy
on your own. You see, to truly enjoy a teeter-totter, you need another person. You
and a friend both have to agree to play on the teeter-totter. This agreement is an
all-or-nothing proposition. Both of you will either teeter-totter or you will not. If
either of you fails to take your respective seat on each end of the teeter-totter,
then there will be no teeter-tottering—there’ll just be a sad little kid sitting
motionless on the end of a slanted board.1

 In software, all-or-nothing operations are called transactions. Transactions
allow you to group several operations into a single unit-of-work that either fully
happens or fully doesn’t happen. If everything goes well, then the transaction is a
success. But if anything goes wrong, then the slate is wiped clean and it’s as if
nothing ever happened.

 Probably the most common example of a real-world transaction is a money
transfer. Imagine that you were to transfer $100 from your savings account to
your checking account. The transfer involves two operations: $100 is deducted
from the savings account and $100 is added to the checking account. The money
transfer must be performed completely or not at all. If the deduction from the
savings account works, but the deposit into the checking account fails, you’ll be
out $100 (good for the bank, bad for you). On the other hand, if the deduction
fails but the deposit succeeds, you’ll be ahead $100 (good for you, bad for the
bank). It’s best for both parties involved if the entire transfer is rolled back if
either operation fails.

 Spring has rich support for transaction management, both programmatic and
declarative. In this chapter, you’ll learn how to place application code in transac-
tions to ensure that when things go right they are made permanent—and when
things go wrong nobody needs to know.

5.1 Understanding transactions

To illustrate transactions, consider the purchase of a movie ticket. Purchasing a
ticket typically involves the following actions:
1 We’re still checking into it, but this may qualify as a record for the most uses of the word “teeter-totter”
in a programming book.

Understanding transactions 175

■ The number of available seats will be examined to verify that there are
enough seats available for your purchase.

■ The number of available seats is decremented by one for each ticket purchased.
■ You provide payment for the ticket.
■ The ticket is issued to you.

If everything goes well, you’ll be enjoying a blockbuster movie and the theater
will be a few dollars richer. But what if something goes wrong? For instance, what
if you paid with a credit card that had reached its limit? Certainly, you would not
receive a ticket and the theater wouldn’t receive payment. But if the number of
seats isn’t reset to its value before the purchase, then the movie may artificially
run out of seats (and thus lose sales). Or consider what would happen if every-
thing else works fine, but the ticket issue fails. You’d be short a few dollars and be
stuck at home watching cable TV.

 In order to ensure that neither you nor the theater loses out, the actions above
should be wrapped in a transaction. As a transaction, they’re all treated as a single
action, guaranteeing that they’ll either all fully succeed or they’ll all be rolled
back as if it never happened. Figure 5.1 illustrates how this transaction plays out.

 Transactions play an important role in software, ensuring that data and
resources are never left in an inconsistent state. Without them, there is potential
for data to be corrupted or inconsistent with the business rules of the application.
Figure 5.1 Purchasing a movie ticket as a transaction

176 CHAPTER 5
Managing transactions

 Let’s take a quick look at the four factors that guide transactions and how
they work.

5.1.1 Explaining transactions in only four words

In the grand tradition of software development, an acronym has been created to
describe transactions: ACID. In short, ACID stands for

■ Atomic—Transactions are made up of one or more activities bundled
together as a single unit of work. Atomicity ensures that all of the opera-
tions in the transaction happen or that none of them happen. If all of the
activities succeed, then the transaction is a success. If any of the activities
fail, then the entire transaction fails and is rolled back.

■ Consistent—Once a transaction ends (whether successful or not), the system
is left in a state that is consistent with the business that it models. The data
should not be corrupted with respect to reality.

■ Isolated—Transactions should allow multiple users to work with the same
data, without each user’s work getting tangled up with the others. There-
fore, transactions should be isolated from each other, preventing concur-
rent reads and writes to the same data from occurring. (Note that isolation
typically involves locking rows and/or tables in a database.)

■ Durable—Once the transaction has completed, the results of the transac-
tion should be made permanent so that they will survive any sort of system
crash. This typically involves storing the results in a database or some
other form of persistent storage.

In the movie ticket example, a transaction could ensure atomicity by undoing the
result of all of the steps if any step fails. Atomicity supports consistency by ensur-
ing that the system’s data is never left in an inconsistent, partially done state. Iso-
lation also supports consistency by preventing another concurrent transaction
from stealing seats out from under you while you are still in the process of pur-
chasing them.

 Finally, the effects are durable because they will have been committed to some
persistent storage. In the event of a system crash or other catastrophic event, you
shouldn’t have to worry about results of the transaction being lost.

 For a more detailed explanation of transactions, we suggest that you read Pat-
terns of Enterprise Application Architecture by Martin Fowler. Specifically, chapter 5

discusses concurrency and transactions.

Understanding transactions 177

5.1.2 Understanding Spring’s transaction management support

Spring, like EJB, provides support for both programmatic and declarative trans-
action management support. But Spring’s transaction management capabilities
exceed those of EJB.

 Spring’s support for programmatic transaction management differs greatly
from that of EJB. Unlike EJB, which is coupled with a Java Transaction API (JTA)
implementation, Spring employs a callback mechanism that abstracts away the
actual transaction implementation from the transactional code. In fact, Spring’s
transaction management support doesn’t even require a JTA implementation. If
your application uses only a single persistent resource, Spring can use the trans-
actional support afforded by the persistence mechanism. This includes JDBC,
Hibernate, Java Data Objects (JDO), and Apache’s Object Relational Bridge
(OJB). However, if your application has transaction requirements that span mul-
tiple resources, Spring can support distributed (XA) transactions using a third-
party JTA implementation. We’ll discuss Spring’s support for programmatic
transactions in section 5.2.

 While programmatic transaction management affords you flexibility in pre-
cisely defining transaction boundaries in your code, declarative transactions help
you decouple an operation from its transaction rules. Spring’s support for declar-
ative transactions is reminiscent of EJB’s container-managed transactions (CMT).
Both allow you to define transaction boundaries declaratively. But Spring’s
declarative transaction go beyond CMT by allowing you to declare additional
attributes such as isolation level and timeouts.2 We’ll begin working with Spring’s
declarative transaction support in section 5.3.

 Choosing between programmatic and declarative transaction management is
largely a decision of fine-grained control versus convenience. When you program
transactions into your code, you gain precise control over transaction boundaries,
beginning and ending them precisely where you want. Typically, you will not
require the fine-grained control offered by programmatic transactions and will
choose to declare your transactions in the context definition file.

 Regardless of whether you choose to program transactions into your beans or
to declare them as aspects, you’ll be using a Spring transaction manager to inter-
face with a platform-specific transaction implementation. Let’s take a look at how
2 Although the EJB specification doesn’t provide for transaction isolation levels and timeouts in CMT,
several EJB containers provide these capabilities.

178 CHAPTER 5
Managing transactions

Spring’s transaction managers free you from dealing directly with platform-
specific transaction implementations.

5.1.3 Introducing Spring’s transaction manager

Spring does not directly manage transactions. Instead, it comes with a selection
of transaction managers that delegate responsibility for transaction management
to a platform-specific transaction implementation provided by either JTA or the
persistence mechanism. Spring’s transaction managers are listed in table 5.1.

Each of these transaction managers acts as a façade to a platform-specific trans-
action implementation (figure 5.2). This makes it possible for you to work with a
transaction in Spring with little regard to what the actual transaction implemen-
tation is.

 To use a transaction manager, you’ll need to declare it in your application con-
text. Let’s look at how to declare each of these transaction managers, starting with
DataSourceTransactionManager.

JDBC transactions
If you’re using straight JDBC for your application’s persistence, DataSource-
TransactionManager will handle transactional boundaries for you. To use Data-
SourceTransactionManager, wire it into your application’s context definition

Table 5.1 Spring’s selection of transaction managers for many different transaction implementations

Transaction manager implementation Purpose

org.springframework.jdbc.datasource.
DataSourceTransactionManager

Manages transactions on a single JDBC
DataSource.

org.springframework.orm.hiber-
nate.HibernateTransactionManager

Used to manage transactions when Hibernate is the
persistence mechanism.

org.springframework.orm.jdo.
JdoTransactionManager

Used to manage transactions when JDO is used for
persistence.

org.springframework.transaction.
jta.JtaTransactionManager

Manages transactions using a Java Transaction API
(JTA) implementation. Must be used when a trans-
action spans multiple resources.

org.springframework.orm.ojb.
PersistenceBrokerTransactionManager

Manages transactions when Apache’s Object Rela-
tional Bridge (OJB) is used for persistence.
using the following XML:

<bean id="transactionManager" class="org.springframework.jdbc.
 datasource.DataSourceTransactionManager">➥

Understanding transactions 179

 <property name="dataSource">
 <ref bean="dataSource"/>
 </property>
</bean>

Notice that the dataSource property is set with a reference to a bean named data-
Source. Presumably, the dataSource bean is a javax.sql.DataSource bean defined
elsewhere in your context definition file.

 Behind the scenes, DataSourceTransactionManager manages transactions by
making calls on the java.sql.Connection object retrieved from the DataSource.
For instance, a successful transaction is committed by calling the commit()
method on the connection. Likewise, a failed transaction is rolled back by calling
the rollback() method.

Hibernate transactions
If your application’s persistence is handled by Hibernate, then you’ll want to
use HibernateTransactionManager. Declare it in your application using the XML
on the following page.
Figure 5.2 Spring’s transaction managers delegate transaction-management responsibility to
platform-specific transaction implementations.

180 CHAPTER 5
Managing transactions

<bean id="transactionManager" class="org.springframework.
 orm.hibernate.HibernateTransactionManager">
 <property name="sessionFactory">
 <ref bean="sessionFactory"/>
 </property>
</bean>

The sessionFactory property should be wired with a Hibernate SessionFactory,
here cleverly named sessionFactory. See chapter 4 for details on setting up a
Hibernate session factory.

 HibernateTransactionManager delegates responsibility for transaction man-
agement to a net.sf.hibernate.Transaction object that it retrieves from the
Hibernate session. When a transaction successfully completes, HibernateTrans-
actionManager will call the commit() method on the Transaction object. Simi-
larly, when a transaction fails, the rollback() method will be called on the
Transaction object.

Java Data Objects transactions

Perhaps JDBC and Hibernate aren’t for you and you’ve decided to implement
your application’s persistence layer using Java Data Objects (JDO). In that case,
the transaction manager of choice will be JdoTransactionManager. It can be
declared into your application’s context like this:

<bean id="transactionManager"
 class="org.springframework.orm.jdo.JdoTransactionManager">
 <property name="persistenceManagerFactory">
 <ref bean="persistenceManagerFactory"/>
 </property>
</bean>

With JdoTransactionManager, you need to wire in a javax.jdo.Persistence-
ManagerFactory instance to the persistenceManagerFactory property. See chapter 4
for more information on how to set up a JDO persistence manager factory.

 Under the covers, JdoTransactionManager works with the transaction object
retrieved from the JDO persistence manager, calling commit() at the end of a suc-
cessful transaction and rollback() if the transaction fails.

Object Relational Bridge transactions

Yet another persistence framework available to use within a Spring applica-

➥

tion is Apache’s Object Relational Bridge (OJB). If you’ve chosen to use OJB
for persistence, you can use the PersistenceBrokerTransactionManager to man-
age transactions:

Programming transactions in Spring 181

<bean id="transactionManager" class="org.springframework.orm.
 ojb.PersistenceBrokerTransactionManager">
…
</bean>

PersistenceBrokerTransactionManager starts a transaction by retrieving an
org.apache.ojb.broker.PersistenceBroker. When a transaction completes suc-
cessfully, the PersistenceBrokerTransactionManager calls the commitTransaction()
method on the PersistenceBroker. When a transaction fails, it is rolled back by a
call to the setRollbackOnly() method.

Java Transaction API transactions
If none of the aforementioned transaction managers meet your needs or if your
transactions span multiple transaction sources (e.g., two or more different data-
bases), you’ll need to use JtaTransactionManager:

<bean id="transactionManager" class="org.springframework.
 transaction.jta.JtaTransactionManager">
 <property name="transactionManagerName">
 <value>java:/TransactionManager</value>
 </property>
</bean>

JtaTransactionManager delegates transaction management responsibility to a JTA
implementation. JTA specifies a standard API to coordinate transactions between
an application and one or more data sources. The transactionManagerName prop-
erty specifies a JTA transaction manager to be looked up via JNDI.

 JtaTransactionManager works with javax.transaction.UserTransaction and
javax.transaction.TransactionManager objects, delegating responsibility for
transaction manager to those objects. A successful transaction will be committed
with a call to the UserTransaction.commit() method. Likewise, if the transaction
fails, the UserTransaction’s rollback() method will be called.

 By now, we hope you’ve found a Spring transaction manager suitable for your
application’s needs and have wired it into your Spring configuration file. Now it’s
time to put that transaction manager to work. We’ll start by employing the trans-
action manager to program transactions manually.

5.2 Programming transactions in Spring

The enrollStudentInCourse() method of CourseService has multiple actions that

➥

➥

are taken during the course of enrolling a student in a course. If any of these
actions go sour, then all actions should be rolled back as if nothing happened. In
other words, enrollStudentInCourse() needs to be wrapped in a transaction.

182 CHAPTER 5
Managing transactions

 One approach to adding transactions to your code is to programmatically add
transactional boundaries using Spring’s TransactionTemplate class. Like other
template classes in Spring (such as JdbcTemplate discussed in chapter 4), Trans-
actionTemplate utilizes a callback mechanism. Listing 5.1 shows how to wrap
your code within a TransactionTemplate.

public void enrollStudentInCourse() {
 transactionTemplate.execute(
 new TransactionCallback() {
 public Object doInTransaction(TransactionStatus ts) {
 try {
 // do stuff
 } catch (Exception e) {
 ts.setRollbackOnly();
 }

 return null;
 }
 }
);
}

You start by implementing the TransactionCallback interface. Because Transac-
tionCallback has only one method to implement, it is often easiest to implement
it as an anonymous inner-class, as shown in listing 5.1. Place the code you want to
run within a transactional context in the doInTransaction() method.

 Calling the execute() method on the TransactionTemplate instance will exe-
cute the code contained within the TransactionCallback instance. If your code
encounters a problem, calling setRollbackOnly() on the TransactionStatus
object will roll back the transaction. Otherwise, if the doInTransaction() method
returns successfully, the transaction will be committed.

 Where does the TransactionTemplate instance come from? Good question. It
should be injected into CourseServiceImpl, as follows:

<bean id="transactionTemplate" class="org.springframework.
 transaction.support.TransactionTemplate">
 <property name="transactionManager">
 <ref bean="transactionManager"/>
 </property>

Listing 5.1 Programmatic transaction in the enrollStudentInCourse() method

Runs within doInTransaction()

Calls setRollbackOnly() to roll Calls setRollbackOnly() to roll back

If successful, transaction is committed

➥

</bean>

<bean id="courseService"
 class="com.springinaction.training.service.CourseServiceImpl">

Declaring transactions 183

…
 <property name=" transactionTemplate">
 <ref bean=" transactionTemplate"/>
 </property>
</bean>

Notice that the transactionTemplate bean has a transactionManager property.
Under the hood, TransactionTemplate uses an implementation of Platform-
TransactionManager to handle the platform-specific details of transaction man-
agement. Here we’ve wired in a reference to a bean named transactionManager,
which could be any of the implementations of the PlatformTransactionManager
interface discussed in section 5.1.3.

 Programmatic transactions are good when you want complete control over
transactional boundaries. But, as you can see from listing 5.1, they are a bit intru-
sive. You had to alter the implementation of enrollStudentInCourse()—using
Spring-specific classes—to employ Spring’s programmatic transaction support.

 Usually your transactional needs won’t require such precise control over trans-
actional boundaries. That’s why you’ll typically choose to declare your transactions
outside of your application code (in the Spring configuration file, for instance).
The rest of this chapter will cover Spring’s declarative transaction management.

5.3 Declaring transactions

At one time not too long ago, declarative transaction management was a capabil-
ity only available in EJB containers. But now Spring offers support for declarative
transactions to POJOs. This is a significant feature of Spring because your appli-
cations will no longer require complex and heavyweight EJBs just to achieve
atomic operations declaratively.

 Spring’s support for declarative transaction management is implemented
through Spring’s AOP framework. This is a natural fit because transactions are a
system-level service above an application’s primary functionality. You can think of
a Spring transaction as an aspect that “wraps” a method.

 To employ declarative transactions in your Spring application, you use Trans-
actionProxyFactoryBean. This proxy factory bean is similar to ProxyFactoryBean
that you learned about in chapter 3, except that it has the specific purpose of
wrapping methods in transactional contexts. (You could achieve the same results
by creating your own ProxyFactoryBean to handle transactions, but it is much eas-

ier to use a TransactionProxyFactoryBean since it is specifically designed for
declarative transactions.) Listing 5.2 shows how you can declare a Transaction-
ProxyFactoryBean.

184 CHAPTER 5
Managing transactions

<bean id="courseService" class="org.springframework.transaction.
 interceptor.TransactionProxyFactoryBean">
 <property name="proxyInterfaces">
 <list>
 <value>
 com.springinaction.training.service.CourseService
 </value>
 </list>
 </property>

 <property name="target">
 <ref bean="courseServiceTarget"/>
 </property>

 <property name="transactionManager">
 <ref bean="transactionManager"/>
 </property>

 <property name="transactionAttributeSource">
 <ref bean="attributeSource"/>
 </property>
</bean>

Notice that this bean has an id of courseService. This is so that when the appli-
cation asks for a courseService from the application context, it will retrieve an
instance that is wrapped by this TransactionProxyFactoryBean. The original
courseService bean should be renamed so that there is no conflict in bean ids.
Any name will work, but it is a recognized convention to derive the name of the
target bean by appending “Target” to the name of the target bean’s proxy. In this
case, courseServiceTarget is appropriate:

<bean id="courseServiceTarget"
 class="com.springinaction.training.service.CourseServiceImpl">
…
</bean>

The TransactionProxyFactoryBean has two collaborators in addition to its target
bean. The transactionManager property indicates an instance of PlatformTrans-
actionManager to use when realizing the transactional context. This can be any
one of the PlatformTransactionManagers covered in section 5.1.3.

 The transactionAttributeSource property takes a reference to a Transaction-

Listing 5.2 Proxying a service for transactional processing

➥

Interface
implemented
by proxy

Bean being proxied

Transaction manager

Transaction attribute source
AttributeSource bean. To understand how transaction attribute sources work,
you must first understand transaction attributes. So, let’s take a detailed look at
how transaction attributes are defined.

Declaring transactions 185

5.3.1 Understanding transaction attributes

In Spring, a transaction attribute is a description of how transaction policies
should be applied to a method. This description could include one or more of the
following parameters:

■ Propagation behavior
■ Isolation level
■ Read-only hints
■ The transaction timeout period

We’ll see how to piece these transaction attribute parameters together to declare
a transaction policy soon. But let’s first take a look at how each of these parame-
ters impacts how a transaction is applied.

Propagation behavior
Propagation behavior defines the boundaries of the transaction with respect to
the client and to the method being called. Spring defines seven distinct propaga-
tion behaviors, as cataloged in table 5.2.3

3Table 5.2 Spring’s transactional propagation rules

Propagation behavior What it means

PROPAGATION_MANDATORY Indicates that the method must run within a transaction. If no
existing transaction is in progress, an exception will be thrown.

PROPAGATION_NESTED Indicates that the method should be run within a nested transac-
tion if an existing transaction is in progress. The nested transaction
can be committed and rolled back individually from the enclosing
transaction. If no enclosing transaction exists, behaves like
PROPAGATION_REQUIRED. Beware that vendor support for this
propagation behavior is spotty at best. Consult the documentation
for your resource manager to determine if nested transactions are
supported.

PROPAGATION_NEVER Indicates that the current method should not run within a transac-
tional context. If there is an existing transaction in progress, an
exception will be thrown.

continued on next page
3 The propagation behaviors described in table 5.3 are defined as constants in the org.springframe-
work.transaction.TransactionDefinition interface.

186 CHAPTER 5
Managing transactions

Most of the propagation behaviors in table 5.2 may look familiar. That’s because
they mirror the propagation rules available in EJB’s container-managed transac-
tions (CMT). For instance, Spring’s PROPAGATION_REQUIRES_NEW is equivalent to
CMT’s requiresNew. Spring adds an additional propagation behavior not avail-
able in CMT, PROPAGATION_NESTED, to support nested transactions.

 Propagation rules answer the question of whether or not a new transaction
should be started or suspended, or if a method should even be executed within a
transactional context at all.

 For example, if a method is declared to be transactional with
PROPAGATION_REQUIRES_NEW behavior, it means that the transactional boundaries
are the same as the method’s own boundaries: A new transaction is started when
the method begins and the transaction ends with the method returns or throws
an exception. If the method has PROPAGATION_REQUIRED behavior, then the trans-
actional boundaries depend on whether a transaction is already under way.

Isolation levels
In a typical application, multiple transactions run concurrently, often working
with the same data to get their job done. Concurrency, while necessary, can lead
to the following problems:

PROPAGATION_NOT_SUPPORTED Indicates that the method should not run within a transaction. If an
existing transaction is in progress, it will be suspended for the
duration of the method. If using JTATransactionManager,
access to TransactionManager is required.

PROPAGATION_REQUIRED Indicates that the current method must run within a transaction. If
an existing transaction is in progress, the method will run within
that transaction. Otherwise, a new transaction will be started.

PROPAGATION_REQUIRES_NEW Indicates that the current method must run within its own transac-
tion. A new transaction is started and if an existing transaction is in
progress, it will be suspended for the duration of the method. If
using JTATransactionManager, access to Transaction-
Manager is required.

PROPAGATION_SUPPORTS Indicates that the current method does not require a transactional
context, but may run within a transaction if one is already in
progress.

Table 5.2 Spring’s transactional propagation rules (continued)

Propagation behavior What it means
■ Dirty read—Dirty reads occur when one transaction reads data that has
been written but not yet committed by another transaction. If the

Declaring transactions 187

changes are later rolled back, the data obtained by the first transaction
will be invalid.

■ Nonrepeatable read—Nonrepeatable reads happen when a transaction per-
forms the same query two or more times and each time the data is differ-
ent. This is usually due to another concurrent transaction updating the
data between the queries.

■ Phantom reads—Phantom reads are similar to nonrepeatable reads. These
occur when a transaction (T1) reads several rows, then a concurrent trans-
action (T2) inserts rows. Upon subsequent queries, the first transaction
(T1) finds additional rows that were not there before.

In an ideal situation, transactions would be completely isolated from each other,
preventing these problems. However, perfect isolation can affect performance
because it often involves locking rows (and sometimes complete tables) in the
datastore. Aggressive locking can hinder concurrency, requiring transactions to
wait on each other to do their work.

 Realizing that perfect isolation can impact performance and because not all
applications will require perfect isolation, sometimes it is desirable to be flexible
with regard to transaction isolation. Therefore, there are several levels of isola-
tion, as described in table 5.3.4

Table 5.3 Spring’s transaction isolation levels4

Isolation level What it means

ISOLATION_DEFAULT Use the default isolation level of the underlying datastore.

ISOLATION_READ_UNCOMMITTED Allows you to read changes that have not yet been committed. May
result in dirty reads, phantom reads, and nonrepeatable reads.

ISOLATION_READ_COMMITTED Allows reads from concurrent transactions that have been com-
mitted. Dirty reads are prevented, but phantom and nonrepeat-
able reads may still occur.

ISOLATION_REPEATABLE_READ Multiple reads of the same field will yield the same results, unless
changed by the transaction itself. Dirty reads and nonrepeatable
reads are prevented by phantom reads may still occur.

ISOLATION_SERIALIZABLE This fully ACID-compliant isolation level ensures that dirty reads,
nonrepeatable reads, and phantom reads are all prevented. This is
the slowest of all isolation levels because it is typically accomplished
by doing full table locks on the tables involved in the transaction.
4 The isolation levels described in table 5.3 are defined as constants in the org.springframe-
work.transaction.TransactionDefinition interface.

188 CHAPTER 5
Managing transactions

ISOLATION_READ_UNCOMMITTED is the most efficient isolation level, but isolates the
transaction the least, leaving the transaction open to dirty, nonrepeatable, and
phantom reads. At the other extreme, ISOLATION_SERIALIZABLE prevents all forms
of isolation problems but is the least efficient.

 Be aware that not all resource managers support all of the isolation levels
listed in table 5.3. Consult the documentation for your resource manager to
determine what isolation levels are available.

Read-only
If a transaction performs only read operations against the underlying datastore,
the datastore may be able to apply certain optimizations that take advantage of
the read-only nature of the transaction. By declaring a transaction as read-only,
you give the underlying datastore the opportunity to apply those optimizations as
it sees fit.

 Because read-only optimizations are applied by the underlying datastore
when a transaction begins, it only makes sense to declare a transaction as read-
only on methods with propagation behaviors that may start a new transaction
(PROPAGATION_REQUIRED, PROPAGATION_REQUIRES_NEW, and PROPAGATION_NESTED).

 Furthermore, if you are using Hibernate as your persistence mechanism,
declaring a transaction as read-only will result in Hibernate’s flush mode being
set to FLUSH_NEVER. This tells Hibernate to avoid unnecessary synchronization of
objects with the database, delaying all updates until the end of the transaction.

Transaction timeout
Finally, one other attribute you may choose to set on a transaction is a timeout.
Suppose that your transaction becomes unexpectedly long-running. Because
transactions may involve locks on the underlying datastore, long-running trans-
actions may tie up database resources unnecessarily. Instead of waiting it out,
you can declare a transaction to automatically roll back after a certain number
of seconds.

 Because the timeout clock begins ticking when a transaction starts, it only
makes sense to declare a transaction timeout on methods with propagation
behaviors that may start a new transaction (PROPAGATION_REQUIRED, PROPAGATION_
REQUIRES_NEW, and PROPAGATION_NESTED).

Declaring transactions 189

5.3.2 Declaring a simple transaction policy

TransactionProxyFactoryBean consults a method’s transaction attributes to deter-
mine how to administer transaction policies on that method. But from where
does TransactionProxyFactoryBean get a method’s transaction attributes?

 As you saw in listing 5.2, TransactionProxyFactoryBean has a transaction-
AttributeSource property. This property is wired to an instance of Transaction-
AttributeSource. A TransactionAttributeSource is used as a reference for looking
up transaction attributes on a method.

 A TransactionAttributeSource is defined by the following interface:

public interface TransactionAttributeSource {
 public TransactionAttribute getTransactionAttribute(
 java.lang.reflect.Method method,
 java.lang.Class targetClass
);
}

The getTransactionAttribute() method is called to find the transaction
attributes for a particular method, given the target class and method. The Trans-
actionAttribute returned indicates the transactional policies that should be
applied to the method.

 Now let’s define the transactionAttributeSource bean in the application con-
text definition XML file as follows:

<bean id="transactionAttributeSource"
 class="org.springframework.transaction.interceptor.
 MatchAlwaysTransactionAttributeSource">
…
</bean>

Voilà! With the transactionAttributeSource bean declared, all the methods
proxied by the target class of TransactionProxyFactoryBean are now performed
within a transactional context. But notice that you didn’t specify which methods
are to be transactional or even what transaction policy to apply. That’s because
here we’ve decided to use MatchAlwaysTransactionAttributeSource.

 MatchAlwaysTransactionAttributeSource is probably the simplest implemen-
tation of TransactionAttributeSource. When its getTransactionAttribute()
method is called, it naively returns the same TransactionAttribute every time,
regardless of which method is being wrapped in the transaction (by default,
PROPAGATION_REQUIRED and ISOLATION_DEFAULT). That’s the “MatchAlways” part of

➥

MatchAlwaysTransactionAttributeSource in play.

190 CHAPTER 5
Managing transactions

Changing the default TransactionAttribute
As mentioned earlier, MatchAlwaysTransactionAttributeSource’s getTransac-
tionAttribute() method will always return a transaction attribute with a policy of
PROPAGATION_REQUIRED/ISOLATION_DEFAULT. If you’d like MatchAlwaysTransaction-
AttributeSource to return a different TransactionAttribute than the default, you
can wire in another TransactionAttribute to the transactionAttribute property.

 For example, to have MatchAlwaysTransactionAttributeSource always return
a TransactionAttribute with a policy of PROPAGATION_REQUIRES_NEW and of
ISOLATION_REPEATABLE_READ, place this snippet of XML into the context defini-
tion file:

<bean id="myTransactionAttribute"
 class="org.springframework.transaction.interceptor.
 DefaultTransactionAttribute">
 <property name="propagationBehaviorName">
 <value>PROPAGATION_REQUIRES_NEW</value>
 </property>
 <property name="isolationLevelName">
 <value>ISOLATION_REPEATABLE_READ</value>
 </property>
</bean>

<bean id="transactionAttributeSource"
 class="org.springframework.transaction.interceptor.
 MatchAlwaysTransactionAttributeSource">
 <property name="transactionAttribute">
 <ref bean="myTransactionAttribute"/>
 </property>
</bean>

The myTransactionAttribute bean defines a custom transaction attribute. The
propagationBehaviorName property sets the propagation behavior and the isola-
tionLevelName sets the isolation level. This bean is then wired into MatchAlways-
TransactionAttributeSource’s transactionAttribute property to override the
default transaction attribute.

 Be aware, however, that while you may change the parameters of the transac-
tion attribute applied by MatchAlwaysTransactionAttributeSource, it will always
return the same transaction attribute, regardless of the method being transacted.

 Using MatchAlwaysTransactionAttributeSource is great when you have a rela-
tively simple application and it’s okay to apply the same transaction policies to all
methods. But in more complex applications, you’ll likely need to apply different

➥

➥

transaction policies to different methods. In that case, you’ll need more fine-
grained control over what policies are applied. So, let’s take a look at another

Declaring transactions by method name 191

TransactionAttributeSource that allows you to declare transactional policies on a
method-by-method basis.

5.4 Declaring transactions by method name

One of the key features of the EJB specification has always been container-
managed transactions (CMT). Using CMT, it is possible to declare transaction pol-
icies in the EJB’s deployment descriptor. For example, suppose that we’ve rewrit-
ten the Spring Training application using EJB instead of Spring. We have
declared a CourseServiceBean’s enrollStudentInCourse() method to be transac-
tional using the following declaration in the ejb-jar.xml file:

<ejb-jar>
...
 <assembly-descriptor>
 <container-transaction>
 <method>
 <ejb-name>CourseServiceBean</ejb-name>
 <method-name>enrollStudentInCourse</method-name>
 </method>
 <trans-attribute>RequiresNew</trans-attribute>
 </container-transaction>
 </assembly-descriptor>
</ejb-jar>

Spring took a page from EJB’s declarative transaction model, providing several
transaction attribute sources that let you declare transaction policies on POJOs.
We’ll start by looking at NameMatchTransactionAttributeSource, a transaction
attribute source that lets you declare transactions on POJOs in a way that is remi-
niscent of EJB’s CMT.

5.4.1 Using NameMatchTransactionAttributeSource

The Spring-equivalent of CMT is the NameMatchAttributeSource. This transaction
attribute source lets you declare transaction attributes on a method name–by–
method name basis. For example, to declare the enrollStudentInCourse()
method to have a propagation behavior of “requires new”, replace the declara-
tion of the transactionAttributeSource bean (from section 5.3.2) as follows:

<bean id="transactionAttributeSource"
 class="org.springframework.transaction.interceptor.
 NameMatchTransactionAttributeSource">➥

 <property name="properties">
 <props>
 <prop key="enrollStudentInCourse">

192 CHAPTER 5
Managing transactions

 PROPAGATION_REQUIRES_NEW
 </prop>
 </props>
 </property>
</bean>

Because this bean is named transactionAttributeSource, it will be wired into
TransactionProxyFactoryBean’s transactionAttributeSource property just as
MatchAlwaysTransactionAttributeSource was in section 5.3.2. TransactionProxy-
FactoryBean will consult this transaction attribute source when it needs to know
how to administer transactions on a method.

 The properties property of NameMatchTransactionAttributeSource maps
method names to a transaction property descriptor. The transaction property
descriptor takes the following form:

In the example above, only the propagation behavior was specified. But as you
can see, many other parameters of a transaction attribute can be defined in the
transaction attribute descriptor. Let’s take a look at the other components of a
transaction attribute descriptor.

Specifying the transaction isolation level
Up until this point, you’ve only seen how to use NameMatchTransactionAttribute-
Source to declare transaction propagation behavior. If this were EJB CMT, that’s
where the story would end. But with Spring, you can declare more.

 For example, suppose that, in addition to “requires new” propagation behav-
ior you want the enrollStudentInCourse() method to have an isolation level of
“repeatable read”. All you need to do is add ISOLATION_REPEATABLE_READ to the
transaction property, separating it from the propagation behavior with a comma:
<bean id="transactionAttributeSource"
 class="org.springframework.transaction.interceptor.
 NameMatchTransactionAttributeSource">➥

Declaring transactions by method name 193

 <property name="properties">
 <props>
 <prop key="enrollStudentInCourse">
 PROPAGATION_REQUIRES_NEW,ISOLATION_REPEATABLE_READ
 </prop>
 </props>
 </property>
</bean>

Using read-only transactions
But wait, there’s more. You can also declare transactions to be read-only by add-
ing readOnly to the list of transaction attributes. For example, to declare that the
getCompletedCourses method be wrapped in a transaction that is optimized for
read-only access, use the following:

<bean id="transactionAttributeSource"
 class="org.springframework.transaction.interceptor.
 NameMatchTransactionAttributeSource">
 <property name="properties">
 <props>
 <prop key="getCompletedCourses">
 PROPAGATION_REQUIRED,ISOLATION_REPEATABLE_READ,readOnly
 </prop>
 </props>
 </property>
</bean>

Specifying rollback rules
Finally, transactions can be declared to roll back or not roll back based on excep-
tions that are thrown during the course of the transaction. By default, transac-
tions are rolled back only on runtime exceptions and not on checked exceptions.
(For those familiar with EJB, you may recognize that this is EJB’s behavior as well.)
However, you can specify that a transaction be rolled back on specific checked
exceptions as well.

 For example, to have the transaction always roll back when a CourseException
(or any subclass of CourseException) is thrown, alter the transaction attribute to
appear as follows:

<bean id="transactionAttributeSource"
 class="org.springframework.transaction.interceptor.
 NameMatchTransactionAttributeSource">
 <property name="properties">
 <props>

➥

➥

 <prop key="enrollStudentInCourse">
 PROPAGATION_REQUIRES_NEW,ISOLATION_REPEATABLE_READ,
 -CourseException

194 CHAPTER 5
Managing transactions

 </prop>
 </props>
 </property>
</bean>

Notice that the CourseException is marked with a negation sign (-). Exceptions
can be marked as being either negative (-) or positive (+). Negative exceptions
will trigger a rollback if the exception (or any subclass thereof) is thrown. Positive
exceptions, on the other hand, indicate that the transaction should be committed
even if the exception is thrown. You can even mark runtime exceptions as positive
to prevent rollbacks (but carefully consider if this is what you want to do).

Using wildcard matches
Just as with EJB, you can also use wildcards to declare transaction policies for mul-
tiple methods that match a pattern. For example, to apply “supports” propaga-
tion behavior to all methods whose name start with “get”, use the following:

<bean id="transactionAttributeSource"
 class="org.springframework.transaction.interceptor.
 NameMatchTransactionAttributeSource">
 <property name="properties">
 <props>
 <prop key="get*">
 PROPAGATION_SUPPORTS
 </prop>
 </props>
 </property>
</bean>

NameMatchTransactionAttributeSource is a great way to mimic EJB’s CMT, only
with POJOs and with even more power. We’ll pick up the discussion of Spring’s
other transaction attribute sources in section 5.5. First, let’s look at how you can
declare name-matched transactions directly with TransactionProxyFactoryBean,
without declaring a NameMatchTransactionAttributeSource.

5.4.2 Shortcutting name-matched transactions

So far, we’ve shown you how to use NameMatchTransactionAttributeSource by
defining a bean instance and naming it transactionAttributeSource. Done this
way, the transactionAttributeSource bean will be wired into TransactionProxy-
FactoryBean’s transactionAttributeSource property. This way will work fine, but
there is a slightly easier way.

➥

 As it turns out, TransactionProxyFactoryBean also has a transaction-
Attributes property. Instead of wiring a NameMatchTransactionAttributeSource

Declaring transactions with metadata 195

into this property, you can directly wire the transaction properties into Transaction-
ProxyFactoryBean’s transactionAttributes property as follows:

<bean id="courseService" class="org.springframework.transaction.
 interceptor.TransactionProxyFactoryBean">
…
 <property name="transactionProperties">
 <props>
 <prop key="enrollStudentInCourse">
 PROPAGATION_REQUIRES_NEW
 </prop>
 </props>
 </property>
</bean>

Wiring transaction properties into the transactionProperties property is func-
tionally identical to wiring the NameMatchTransactionAttributeSource to the
transactionAttributeSource property. Under the covers, TransactionProxy-
FactoryBean instantiates its own NameMatchTransactionAttributeSource and
passes the properties wired into its transactionProperties property into the
NameMatchTransactionAttributeSource’s setProperties() method. As a result,
you don’t need to create a separate transactionAttributeSource bean.

5.5 Declaring transactions with metadata

So far, you’ve seen how to declare transactions in Spring’s context definition
file using XML. This has proved to be less intrusive than programmatically
defining transactions in your code. In doing so, however, you were forced to
declare the method’s transaction policy in a file separate from the method’s
definition. Wouldn’t it be great if you could declare the transaction attributes
along with the method definition in the code itself (without resorting to pro-
grammatic transactions)?

 An exciting and relatively new approach to adding information to code is to
tag classes and methods with metadata attributes. This capability has been avail-
able in C# since the beginning of the Microsoft .NET platform, but has only
recently been added to Java.

 By themselves, metadata attributes do not directly alter the behavior of your
code. Instead, they provide hints and suggestions to the application’s underly-
ing platform to guide the platform on how it can apply additional behavior to

➥

the application.
 Transaction attributes are a natural use of metadata. As you’ve seen, trans-

action attributes do not directly alter the execution of your methods, but when a

196 CHAPTER 5
Managing transactions

method is proxied by a TransactionProxyFactoryBean, it may be wrapped in
a transaction.

 Currently two implementations of metadata are available to Java developers:
Jakarta Commons Attributes and JSR-175 (the metadata specification for Java).
JSR-175’s metadata support was released as part of Java 5 and is probably the
most highly anticipated feature for Java in a long time. Without doubt, it will
become the standard approach to tagging code with metadata in the future. How-
ever, many developers grew impatient waiting for a standard approach to meta-
data in Java. As a result, the Jakarta Commons Attributes project was born.

 At the time that this book was written, Java 5 had just been released and
Spring only supported the Jakarta Commons Attributes implementation for
metadata. We anticipate that support for JSR-175 metadata will soon be available
in a future release of Spring. If so, we recommend that you choose JSR-175 meta-
data over Jakarta Commons Attributes, primarily because JSR-175 is a standard
feature of Java 5 and requires no additional compilation step. However, if sup-
port for JSR-175 is not yet available (in either Spring or in the version of Java that
your application is targeting), then your only choice will be to use Jakarta Com-
mons Attributes.

 Regardless of which implementation you use, you’ll need to give Transaction-
ProxyFactoryBean a transaction attribute source suitable for retrieving transac-
tion attributes from metadata.

5.5.1 Sourcing transaction attributes from metadata

For TransactionProxyFactoryBean to retrieve transaction attributes from meta-
data, it will need its transactionAttributeSource to be an AttributesTransaction-
AttributeSource, as follows:

<bean id="transactionAttributeSource"
 class="org.springframework.transaction.interceptor.
 AttributesTransactionAttributeSource">

 <constructor-arg>
 <ref bean="attributesImpl"/>
 </constructor-arg>
</bean>

Notice that we wired in a constructor argument to this transaction attribute
source with a reference to a bean named attributesImpl. The attributesImpl

➥

bean (which we’ll define soon) will be used by the transaction attribute source
to interact with the underlying metadata implementation. This way,
AttributesTransactionAttributeSource is kept generic with regard to which

Declaring transactions with metadata 197

metadata implementation is used, whether it is Jakarta Commons Attributes or
JSR-175 annotations.

 Let’s start our exploration of metadata using the Jakarta Commons Attributes
implementation.

5.5.2 Declaring transactions with Commons Attributes

Jakarta Commons Attributes was one of the first metadata implementations avail-
able for Java. The good thing about Commons Attributes is that it doesn’t require
that you make the jump to Java 5 to use it. So, if you are still deploying to an older
version of Java and want to declare transactions with metadata, your only option
is to use Commons Attributes.

Declaring an attributes implementation
When we declared the AttributesTransactionAttributeSource bean in section 5.5.1,
we passed a reference to the attributesImpl bean to the constructor. Now we’ll
define that bean to use Commons Attributes as the metadata implementation for
retrieving transaction attributes:

<bean id="attributesImpl" class="org.springframework.
 metadata.commons.CommonsAttributes">
…
</bean>

With CommonsAttributes wired in as the metadata implementation for Attributes-
TransactionAttributeSource, Spring will look for transaction attributes as meta-
data tagged on transactional methods. Therefore, the next thing to do is to tag
those methods with transaction attributes.

Tagging transactional methods
Jakarta Commons Attributes are applied to a class or method by placing doclet tags
in comments preceding the class/method. These doclet tags take the following form:

➥

In Jakarta Commons Attributes, metadata can be defined using any form of Java-
Bean. As it turns out, the classes that implement Spring’s transaction attributes are

198 CHAPTER 5
Managing transactions

perfectly suitable to be used as metadata with Jakarta Commons Attributes. This
includes DefaultTransactionAttribute and RuleBasedTransactionAttribute.

 The enrollStudentInCourse() method needs to be executed within the con-
text of a transaction (although, not necessarily a new transaction). Tagging it with
the DefaultTransactionAttribute class and setting the propagationBehaviorName
property to PROPAGATION_REQUIRED will do the trick:

/**
 * @@org.springframework.transaction.interceptor.

 DefaultTransactionAttribute(propagationBehaviorName=
 "PROPAGATION_REQUIRED")

 */
public void enrollStudentInCourse() {
…
}

Notice that you had to use the fully qualified class name of DefaultTransaction-
Attribute when using it as an attribute. This is important because after the
Jakarta Commons Attributes precompiler is finished with CourseServiceImpl, it
will have rewritten CourseServiceImpl to reference an instance of DefaultTrans-
actionAttribute. Unless you specify the package, you’ll get compilation errors
when trying to compile the generated CourseServiceImpl class. Optionally, you
may choose to import the package so that you can use the class name by itself.

 The choice between using the fully qualified class name or importing the
package is really a matter of taste. As you can see, including the fully qualified
class name is quite verbose. However, if you choose to avoid this by importing the
package, be careful that your IDE does not remove this package automatically.
Since the attribute class name is within doclet comments, your IDE may not rec-
ognize the attribute’s package as a necessary import and remove it. For our exam-
ples, we are going to use the qualified class name.

 Now the enrollStudentInCourse() method is tagged to require a transactional
context. As for all of the other methods of CourseServiceImpl, you’d like them to
support transactional contexts, but they do not require a transaction. One way to
accomplish this is to tag each of the other methods with DefaultTransaction-
Attribute, setting propagationBehaviorName to PROPAGATION_SUPPORTS. But there’s
a better way.

 By placing transaction tags at the class level, you can specify the transaction
attributes that are to apply to all methods in the class that aren’t already tagged oth-

➥
➥

erwise. So, to specify that all methods of CourseServiceImpl support transactions:

/**
 * @@org.springframework.transaction.interceptor.

Declaring transactions with metadata 199

 DefaultTransactionAttribute(
 propagationBehaviorName="PROPAGATION_SUPPORTS")

 */
public class CourseServiceImpl implements CourseService {
…
}

Now you’ve tagged the service methods and classes with transactional metadata.
But how does that metadata get out of the comment block and into the code so
that AttributesTransactionAttributeSource can find it and apply the transac-
tional policies? That’s where the Commons Attributes precompiler comes in.

Setting up the build for Commons Attributes
The magic behind Jakarta Commons Attributes is a precompiler that parses the
doclet tags in your code and then rewrites your class, embedding the metadata in
its code. It’s not important to fully understand how the precompilation step
works to be able to use it to declare transactions in Spring, but it is important that
you add the precompiler to the build file so that the transaction metadata is set in
the code.

 If you’re using Ant to do your build, you’ll need to download the following
files and place them in your $ANT_HOME/lib directory:

■ http://cvs.apache.org/~leosutic/commons-attributes-api-SNAPSHOT.jar
■ http://cvs.apache.org/~leosutic/commons-attributes-compiler-

SNAPSHOT.jar
■ http://www.ibiblio.org/maven/commons-collections/jars/commons-

collections-2.1.jar
■ http://www.ibiblio.org/maven/xjavadoc/jars/xjavadoc-1.0.jar

Next, you’ll need to add the following line to your build.xml file to load the pre-
compiler task into Ant:

<taskdef
 resource="org/apache/commons/attributes/anttasks.properties"/>

The precompiler task is named attribute-compiler. To use it, add the following
target to your build.xml file:

<target name="compile-attributes">
 <attribute-compiler destdir=".">
 <fileset dir="." includes="*.java"/>

➥
➥

 </attribute-compiler>
</target>

200 CHAPTER 5
Managing transactions

Finally, change your compile target to depend on the compile-attributes target:

<target name="compile"
 depends="compile-attributes">
 <javac
 srcdir="."
 destdir="${basedir}"
 deprecation="true"
 debug="true"
 classpath="${ant.home}/lib/
 commons-attributes-api-SNAPSHOT.jar;."
 optimize="false">
 </javac>
</target>

Notice that you’ll also need to add the commons-attributes-api-SNAPSHOT.jar file
to <javac>’s class path. This is so that <javac> can find the Commons Attributes
classes when it compiles your code.

 If you’re using Maven to do your build, then setting up the precompiler is a bit
easier. First, download these two JAR files and place them in the commons-
attributes/jars directory in your local Maven repository (.maven/repository/
commons-attributes/jars):

■ http://cvs.apache.org/~leosutic/commons-attributes-api-SNAPSHOT.jar
■ http://cvs.apache.org/~leosutic/commons-attributes-compiler-

SNAPSHOT.jar

Then download the following JAR file and place it in the Maven plugins directory
(.maven/plugins):

■ http://cvs.apache.org/~leosutic/commons-attributes-plugin-2.0alpha.jar

That’s it! The plug-in sets up the attributes precompiler as a prerequisite to the
java:compile goal. This means that you won’t be able to compile Java source code
without first passing it through the attributes precompiler.

 Now the application is set up to apply transactions based on transaction meta-
data. We’ve gone through several steps to get here, so let’s review: When you run
your build, the transaction attributes will be compiled directly into your service
classes. When AttributesTransactionAttributeSource attempts to look up the trans-
action attributes for any method in CourseServiceImpl, it will find the attributes that
were tagged on the method and TransactionProxyFactoryBean will use them when

➥

determining the transaction policy for the method.

Trimming down transaction declarations 201

5.6 Trimming down transaction declarations

By now you’ve chosen a TransactionAttributeSource, declared your service layer
methods to be transactional, and wired in a transaction manager suited for your
persistence layer. Everything works as expected. But there’s still one thing that
nags at you.

 Looking through the bean wiring file, you find several service/target pairs.
That is, you find several declarations of beans whose name implies that they are
service beans, but in fact, they are instances of TransactionProxyFactoryBean. The
real service bean is named with a Target suffix and wired into the Transaction-
ProxyFactoryBean’s target property.

 For example, the course service is defined by the following two <bean> decla-
rations:

<bean id="courseService"
 class="org.springframework.transaction.interceptor.
 TransactionProxyFactoryBean">

 <property name="target">
 <ref bean="courseServiceTarget"/>
 </property>

 <property name="transactionManager">
 <ref bean="transactionManager"/>
 </property>

 <property name="transactionAttributeSource">
 <ref bean="attributeSource"/>
 </property>
</bean>

<bean id="courseServiceTarget"
 class="com.springinaction.training.service.CourseServiceImpl">
</bean>

What’s more, you notice that all of your service beans are defined the same way
and wired with the same transaction manager and the same transaction
attribute source. This seems like a lot of redundant XML. Auto-wiring some of
TransactionProxyFactoryBean’s properties would go a long way toward clean-
ing up the XML, but you’d still be left with a target/service pair. Wouldn’t it be
great if you could eliminate the redundant instances of TransactionProxyFactory-

➥

Bean altogether?
 Fortunately, you can. Spring offers two ways to combat the redundant XML:

202 CHAPTER 5
Managing transactions

■ Bean inheritance
■ AOP autoproxying

Let’s take a look at each of these approaches, starting with bean inheritance.

5.6.1 Inheriting from a parent TransactionProxyFactoryBean

One way to simplify declaration of transactions and service beans is to use
Spring’s support for parent beans. Using the parent attribute of the <bean> ele-
ment, you can specify that a bean be a child of some other bean, inheriting the
parent bean’s properties. The concept is similar to one class subclassing
another class, except that it happens at the bean declaration level. Think of it
as “sub-beaning.”

 To use bean inheritance to reduce XML that results from multiple declarations
of TransactionProxyFactoryBean, start by adding an abstract declaration of
TransactionProxyFactoryBean to the context definition:

<bean id="abstractTxDefinition"
 class="org.springframework.transaction.interceptor.
 TransactionProxyFactoryBean"
 lazy-init="true">

 <property name="transactionManager">
 <ref bean="transactionManager"/>
 </property>

 <property name="transactionAttributeSource">
 <ref bean="attributeSource"/>
 </property>
</bean>

This declaration is similar to the declaration of courseService from earlier,
except for two things:

■ First, its lazy-init property is set to true. Application contexts will usually
instantiate all singleton beans at startup. Since our application will only
use sub-beans of abstractTxDefinition and never use abstractTxDefini-
tion directly, we don’t want the container to attempt to instantiate a bean
we’ll never use. The lazy-init property tells the container to not create
the bean unless we ask for it (which we won’t do). In effect, lazy-init is
what makes this bean abstract.

➥

■ The target property is curiously missing. We’ll set that property in the
sub-beans.

Trimming down transaction declarations 203

The next thing to do is to create the sub-bean. Consider the following declaration
of the courseService bean:

<bean id="courseService"
 parent="abstractTxDefinition">
 <property name="target">
 <bean class="com.springinaction.training.
 service.CourseServiceImpl">
 </property>
</bean>

The parent attribute indicates that this bean should inherit its definition from the
abstractTxDefinition bean. The only thing that this bean adds is to wire in a
value for the target property. In this case, we’re taking advantage of inner-beans
to declare the target bean right where we’re using it. This keeps the XML tidy by
not declaring a separate CourseServiceImpl bean (knowing that you’ll never use a
CourseServiceImpl outside the scope of a transaction).

 So far, this technique hasn’t saved us much XML. But think about what you’ll
need to do to make another bean transactional. You’ll only have to add another
sub-bean of abstractTxDefinition. For example:

<bean id="studentService"
 parent="abstractTxDefinition">
 <property name="target">
 <bean class="com.springinaction.training.
 service.StudentServiceImpl"/>
 </property>
</bean>

But notice you didn’t have to completely declare another TransactionProxy-
FactoryBean again. Now imagine if your application had dozens (or hundreds) of
service beans that need to be transactional. Bean inheritance really pays off when
you have many transactional beans.

 Now let’s look at how to use AOP auto-proxying to completely eliminate the
need for TransactionProxyFactoryBean.

5.6.2 Autoproxying transactions

As you learned in chapter 3, you can eliminate instances of ProxyFactoryBean by
employing autoproxying. Since transactions in Spring are based on AOP, you can
also use auto-proxying to get rid of redundant instances of TransactionProxy-
FactoryBean. Here’s how.

➥

➥

 First, just as you would do any auto-advising, you need to declare a bean that is
an instance of DefaultAdvisorAutoProxyCreator:

204 CHAPTER 5
Managing transactions

<bean id="autoproxy"
 class="org.springframework.aop.framework.autoproxy.
 DefaultAdvisorAutoProxyCreator">
…
</bean>

DefaultAdvisorAutoProxyCreator will scour the application context for advisors,
automatically using them to proxy all beans that match the advisor’s pointcut. For
transactions, the advisor to use is TransactionAttributeSourceAdvisor:

<bean id="transactionAdvisor"
 class="org.springframework.transaction.interceptor.
 TransactionAttributeSourceAdvisor">
 <constructor-arg>
 <ref bean="transactionInterceptor"/>
 </constructor-arg>
</bean>

TransactionAttributeSourceAdvisor is a full-fledged AOP advisor just like those
you read about in chapter 3. And just like any advisor, it is made up of a pointcut
and an interceptor. The pointcut is a static method pointcut that consults a trans-
action attribute source to determine if a method has any transaction attributes
associated with it. If a method has transaction attributes, then the method will be
proxied to be contained within a transaction.

 As for the interceptor, it is wired into TransactionAttributeSourceAdvisor via
a constructor argument. It’s implemented by the TransactionInterceptor class
and wired into the application as follows:

<bean id="transactionInterceptor"
 class="org.springframework.transaction.interceptor.
 TransactionInterceptor">
 <property name="transactionManager">
 <ref bean="transactionManager"/>
 </property>
 <property name="transactionAttributeSource">
 <ref bean="transactionAttributeSource"/>
 </property>
</bean>

TransactionInterceptor has two collaborators that it uses to do its job. It uses a
PlatformTransactionManager, wired into the transactionManager property, to
coordinate transactions with the underlying transaction implementation. And it
uses the transaction attribute source wired into the transactionAttributeSource

➥

➥

➥

property to determine the transaction policies to be applied to the methods it
will intercept. As it turns out, you’ve already defined transactionManager and

Trimming down transaction declarations 205

transactionAttributeSource beans when you were using TransactionProxy-
FactoryBean—they’ll do just fine for the transaction interceptor, too.

 The final thing to do is to remove all instances of TransactionProxyFactory-
Bean and rename the service layer beans back to their rightful name (e.g., course-
ServiceTarget becomes courseService).

Choosing an attribute source for autoproxying
When autoproxying transactions, the transaction attribute source is the key to
whether or not a method is proxied. This fact may prompt you to choose a differ-
ent transaction attribute source. For example, consider the consequences of using
the following transaction attribute source with autoproxying:

<bean id="transactionAttributeSource"
 class="org.springframework.transaction.interceptor.
 NameMatchTransactionAttributeSource">
 <property name="properties">
 <props>
 <prop key="get*v>PROPAGATION_SUPPORTS</prop>
 </props>
 </property>
</bean>

Used this way, all methods (regardless of which class they are in) whose name
starts with “get” will be proxied with a transaction propagation behavior of “sup-
ports”. Maybe this is what you desire, but probably not. Keep in mind that
DefaultAdvisorAutoProxyCreator will attempt to proxy all methods on all beans
within the application context. If any method on any bean has a name that starts
with “get”, it will be proxied.

 When auto-proxying, a better choice for the transaction attribute source is
MethodMapTransactionAttributeSource. This transaction attribute source is simi-
lar to NameMatchTransactionAttributeSource, but lets you specify the fully quali-
fied class and method name to be transactional. For example:

<bean id="transactionAttributeSource"
 class="org.springframework.transaction.interceptor.
 MethodMapTransactionAttributeSource">
 <property name="methodMap">
 <map>
 <entry key="com.springinaction.training.service.
 CourseServiceImpl.get*">
 <value>PROPAGATION_SUPPORTS</value>
 </entry>

➥

➥

➥

 </map>
 </property>
</bean>

206 CHAPTER 5
Managing transactions

Using MethodMapTransactionAttributeSource this way, you have specified that
only “get” methods of CourseServiceImpl are to have a transaction propagation
behavior of “supports”. To add transactional behavior to other methods in other
classes, you’ll need to add <entry> elements to the method map.

 Now, here’s the cool part. An even better choice for transaction attribute
source when you are auto-proxying is AttributesTransactionAttributeSource.
Recall that AttributesTransactionAttributeSource pulls transaction attributes
from metadata placed directly in the code of the methods that are to be transac-
tional. This means that if you are using AttributesTransactionAttributeSource
as the attribute source and you are also using auto-proxying, making a method
transactional or not is simply a matter of adding the appropriate metadata to
the method.

5.7 Summary

Transactions are an important part of enterprise application development that
leads to more robust software. They ensure an all-or-nothing behavior, prevent-
ing data from being inconsistent should the unexpected occur. They also support
concurrency by preventing concurrent application threads from getting in each
other’s way as they work with the same data.

 Spring supports both programmatic and declarative transaction manage-
ment. In either case, Spring shields you from having to work directly with a spe-
cific transaction management implementation by abstracting the transaction
management platform behind a common transaction manager façade.

 Spring employs its own AOP framework to support declarative transaction
management. Spring’s declarative transaction support rivals that of EJB’s CMT,
enabling you to declare more than just propagation behavior on POJOs, including
isolation levels, read-only optimizations, and rollback rules for specific exceptions.

 Finally, when used with metadata and autoproxying, making a method
transactional is often simply a matter of tagging it with the appropriate transac-
tion attribute.

 In the next chapter, we’re going to look at how Spring supports remoting
and see how you can expose your application beans to remote clients via RMI
and web services.

Remoting
This chapter covers
■ Accessing and exposing RMI services
■ Using Caucho’s Hessian and Burlap protocol
■ Understanding Spring’s HTTP invoker
■ Using Spring with web services
207

208 CHAPTER 6
Remoting

Imagine for a moment that you are stranded on a deserted island. This may sound
like a dream come true. After all, who wouldn’t want to get some solitude on a
beach, blissfully ignorant of the goings-on of the outside world?

 But on a deserted island, it’s not piña coladas and sunbathing all of the
time. Even if you enjoy the peaceful seclusion, it won’t be long before you’ll get
hungry, bored, and lonely. You can only live on coconuts and spear-caught fish
for so long. You’ll eventually need food, fresh clothing, and other supplies. And
if you don’t get in contact with another human soon, you may end up talking
to a volleyball!

 Many applications that you’ll develop are like island castaways. On the surface
they may seem self-sufficient, but in reality, they may collaborate with other sys-
tems, both within your organization and external.

 For example, consider a procurement system that needs to communicate with
a vendor’s supply chain system. Maybe your company’s human resources system
needs to integrate with the payroll system. Or even the payroll system may need
to communicate with an external system that prints and mails paychecks. No mat-
ter the circumstance, your application will need to communicate with the other
system to access services remotely.

 Several remoting technologies are available to you, as a Java developer,
including

■ Remote Method Invocation (RMI)
■ Caucho’s Hessian and Burlap
■ Spring’s own HTTP invoker
■ Enterprise JavaBeans (EJB)
■ Web services

Regardless of which remoting technology you choose, Spring provides rich sup-
port for accessing and creating remote services. In this chapter, you’ll learn how
Spring both simplifies and complements these remoting services. But first, let’s
set the stage for this chapter with an overview of how remoting works in Spring.

6.1 Spring remoting overview

Remoting is a conversation between a client application and a service. On the client
side, some functionality is required that isn’t within the scope of the application.

So, the application reaches out to another system that can provide the function-
ality. The remote application exposes the functionality through a remote service.

Spring remoting overview 209

 For example, when a student registers for a course in the Spring Training
application, you’d like to be able to take payment from the customer for the
course (Spring Training is a business, after all). Therefore, the Spring Training
application needs to perform credit card authorization and payment settlement.
This is functionality that is outside the scope of the Spring Training application
itself. There’s no way that Spring Training can directly debit a student’s credit
card or even know if the credit card is good for the funds. Only the bank that
issued the card can perform authorization and settlement. Therefore, it makes
sense for the Spring Training application to make a remote call to a payment ser-
vice exposed by the bank (as illustrated in figure 6.1).

 The conversation between Spring Training and the bank begins with a remote
procedure call (RPC) from the Spring Training application to the bank’s payment
service. On the surface, an RPC is similar to a call to a method on a local object.
Both are synchronous operations, blocking execution in the calling code until the
called procedure is complete.

 The difference is a matter of proximity, with an analogy in human communi-
cation. If you are at the proverbial watercooler at work discussing the outcome of
the weekend’s football game, you are conducting a local conversation—that is,
the conversation takes place between two people in the same room. Likewise, a
local method call is when execution flow is exchanged between two blocks of code
within the same application.

 On the other hand, if you were to pick up the phone to call a client in another
city, your conversation would be conducted remotely over the telephone network.
Similarly, RPC is when execution flow is handed off from one application to
another application, theoretically on a different machine in a remote location
over the network.

 Spring supports remoting for six different RPC models: Remote Method Invo-
cation (RMI), Caucho’s Hessian and Burlap, Spring’s own HTTP invoker, EJB, and
web services using JAX-RPC. Table 6.1 outlines each of these models and briefly
discusses their usefulness in various situations.

Figure 6.1
Spring Training
authorizes credit
cards using a remote

payment service.

210 CHAPTER 6
Remoting

Regardless of which remoting model you choose, you’ll find that a common
theme runs through Spring’s support for each of the models. This means that
once you understand how to configure Spring to work with one of the models,
you’ll have a very low learning curve if you decide to use a different model.

 In all models, services can be configured into your application as Spring-
managed beans. This is accomplished using a proxy factory bean that enables you
to wire remote services into properties of your other beans as if they were local
objects. Figure 6.2 illustrates how this works.

 The client makes calls to the proxy as if the proxy were providing the ser-
vice functionality. The proxy communicates with the remote service on behalf

Table 6.1 The RPC models supported by Spring remoting

RPC Model Useful when…

Remote Method Invocation (RMI) Accessing/exposing Java-based services when network constraints
such as firewalls aren’t a factor

Hessian or Burlap Accessing/exposing Java-based services over HTTP when network
constraints are a factor

HTTP Invoker Accessing/exposing Spring-based services when network constraints
are a factor

EJB Accessing legacy J2EE systems implemented as Enterprise Java-
Beans

JAX-RPC Accessing web services

Figure 6.2
In Spring, remote
services are proxied so
that they can be wired
into client code as a
regular bean.

Spring remoting overview 211

of the client. It handles the details of connecting and making remote calls to
the remote service.
What’s more, if the call to the remote service results in a java.rmi.RemoteExcep-
tion, the proxy handles that exception and rethrows it as an unchecked
org.springframework.remoting.RemoteAccessException. Remote exceptions usu-
ally signal problems such as network or configuration issues that can’t be grace-
fully recovered from. Since there’s usually very little that a client can do to
gracefully recover from a remote exception, rethrowing a RemoteAccessException
makes it optional for the client to handle the exception.

 On the service side, you are able to expose the functionality of any Spring-
managed bean as a remote service using any of the models in listed in table 6.1
(except for EJB and JAX-RPC). Figure 6.3 illustrates how remote exporters expose
bean methods as remote services.

 Whether you’ll be developing code that consumes remote services, imple-
ments those services, or both, working with remote services in Spring is purely a
matter of configuration. You won’t have to write any Java code to support remot-
ing. Your service beans don’t have to be aware that they are involved in an RPC
(although any beans passed to or returned from remote calls may need to imple-
ment java.io.Serializable).

 Let’s start our exploration of Spring’s remoting support by looking at RMI, the
original remoting technology for Java.

Figure 6.3
Spring-managed beans
can be exported as
remote services using
RemoteExporters.

212 CHAPTER 6
Remoting

6.2 Working with RMI

If you’ve been working in Java for any length of time, you’ve no doubt heard of
(and probably used) Remote Method Invocation (RMI). RMI—first introduced into
the Java platform in JDK 1.1—gives Java programmers a powerful way to con-
duct communication between Java programs. Before RMI, the only remoting
options available to Java programmers were CORBA (which at the time required
the purchase of a third-party Object Request Broker, or ORB) or hand-written
socket programming.

 But developing and accessing RMI services is tedious, involving several steps,
both programmatic and manual. Spring simplifies the RMI model by providing a
proxy factory bean that enables you to wire RMI services into your Spring appli-
cation is if they were a local JavaBean. Spring also provides a remote exporter that
makes short work of converting your Spring-managed beans into RMI services.

 To get started with Spring’s RMI, let’s see how to wire an RMI service into the
Spring Training application.

6.2.1 Wiring RMI services

As mentioned earlier, Spring Training, Inc. needs to be able to take payment via
credit card when their students register for a course. Fortunately, a payment ser-
vice is available that can handle this functionality on behalf of Spring Training.
All you’ll need to do is hook the Spring Training application into it. As it turns
out, the payment service exposes its functionality as an RMI service.

 One way to access the payment service is to write a factory method that
retrieves a reference to the payment service in the traditional RMI way:

private String payServiceUrl = "rmi:/creditswitch/PaymentService";

public PaymentService lookupPaymentService()
 throws RemoteException, NotBoundException,
 MalformedURLException {

 PaymentService payService = (PaymentService)
 Naming.lookup(payServiceUrl);

 return payService;
}

The payServiceUrl property will need to be set to the address for the RMI service.

Then, any time the Spring Training application needs a reference to the payment
service, it would need to call the lookupPaymentService() method. While this
would certainly work, it presents two problems:

Working with RMI 213

1 Traditional RMI lookups could result in any one of three exceptions
(RemoteException, NotBoundException, and MalformedURLException) that
must be caught or rethrown.

2 Any code that needs the payment service is responsible for retrieving a
reference to the service itself by calling lookupPaymentService().

The exceptions thrown in the course of an RMI lookup are the kinds that typically
signal a fatal and unrecoverable condition in the application. MalformedUrl-
Exception, for instance, indicates that the address given for the service is not
valid. To recover from this exception, the application will at least need to be
reconfigured and may have to be recompiled. No try/catch block will be able to
recover gracefully, so why should your code be forced to catch and handle it?

 But perhaps even more sinister is the fact that lookupPaymentService() is a
direct violation of inversion of control. This is bad because it means that the client
of lookupPaymentService() is also aware of where the payment service is located
and of the fact that it is an RMI service. Ideally, you should be able to inject a
PaymentService object into any bean that needs one instead of having the bean
look up the service itself. Using dependency injection, any client of Payment-
Service can be ignorant of where the PaymentService comes from.

 Spring’s RmiProxyFactoryBean is a factory bean that creates a proxy to an RMI
service. Using RmiProxyFactoryBean to reference an RMI PaymentService is as
simple as declaring the following <bean> in the Spring configuration file:

<bean id="paymentService"
 class="org.springframework.remoting.rmi.RmiProxyFactoryBean">
 <property name="serviceUrl">
 <value>rmi://${paymenthost}/PayService</value>
 </property>
 <property name="serviceInterface">
 <value>com.springinaction.payment.PaymentService</value>
 </property>
</bean>

The URL of the RMI service is set through the serviceUrl property. Here, the ser-
vice is named PayService and is hosted on a machine whose name is configured
using a property placeholder (see section 2.4.3 in chapter 2). The service-
Interface property specifies the interface that the service implements and
through which the client invokes methods on the service.
 With the payment service defined as a Spring-managed bean, you are able to
wire it as a collaborator into another bean just as you would any other nonremote
bean. For example, suppose that StudentServiceImpl needs to use the payment

214 CHAPTER 6
Remoting

service to authorize a credit card payment. You’d use this code to wire the RMI
service into StudentServiceImpl:

<bean id="studentService"
 class="com.springinaction.training.service.StudentServiceImpl">
…
 <property name="paymentService">
 <ref bean="paymentService"/>
 </property>
…
</bean>

What’s great about accessing an RMI service in this way is that StudentService-
Impl doesn’t even know that it’s dealing with an RMI service. It simply receives a
PaymentService object via injection, without any concern for where it comes from.
Furthermore, the proxy catches any RemoteExceptions that may be thrown by the
service and rethrows them as runtime exceptions so that you may safely ignore
them. This makes it possible to swap out the remote service bean with another
implementation of the service—perhaps a different remote service or maybe a
mock implementation used when unit-testing.

 RmiProxyFactoryBean certainly simplifies the use of RMI services in a Spring
application. But that’s only half of an RMI conversation. Let’s see how Spring sup-
ports the service side of RMI.

6.2.2 Exporting RMI services

Suppose that instead of working on the portion of the Spring Training application
that accesses the payment service, you are responsible for writing the payment ser-
vice itself. Again, the payment service should be exposed as an RMI service.

 Taking a traditional approach to RMI, you might end up implementing the
payment service shown in listing 6.1.

public class PaymentServiceImpl extends UnicastRemoteObject
 implements PaymentService {

 public PaymentServiceImpl() throws RemoteException {}

 public String authorizeCreditCard(String creditCardNumber,

Listing 6.1 Implementing the payment service as an RMI service in the traditional
(non-Spring) way
 String cardHolderName, int expirationMonth,
 int expirationYear, float amount)
 throws AuthorizationException, RemoteException {

Working with RMI 215

 String authCode = ...;

 // implement authorization

 return authCode;
 }

 public void settlePayment(String authCode, int accountNumber,
 float amount) throws SettlementException, RemoteException {
 // implement settlement
 }
}

As for the PaymentService interface that PaymentServiceImpl implements, you’ll
need to ensure that it extends java.rmi.Remote as follows:

public interface PaymentService extends Remote {
 public String authorizeCreditCard(String cardNumber,
 String cardHolderName, int expireMonth, int expireYear,
 float amount) throws AuthorizationException, RemoteException;

 public void settlePayment(String authCode, int merchantNumber,
 float amount) throws SettlementException, RemoteException;
}

But it isn’t enough that you’ve written a service implementation class and inter-
face. You also need to generate client stub and server skeleton classes using the
RMI compiler:

% rmic -d PaymentServiceImpl

Finally, you’ll need to start an RMI registry and bind the service in the registry.
The following code handles this task:

try {
 PaymentService paymentService = new PaymentServiceImpl();

 Registry registry = LocateRegistry.createRegistry(1099);

 Naming.bind("PayService", paymentService);
} catch (RemoteException e) {
…
} catch (MalformedURLException e) {
…
}

Wow! That’s a lot of work just to publish a simple RMI service. In addition to all
the steps required, you may have noticed that RemoteExceptions and Malformed-
UrlExceptions are thrown around quite a bit, even though these exceptions

216 CHAPTER 6
Remoting

usually indicate a fatal error that can’t be recovered from in a catch block. Clearly
a lot of code and manual work is involved to publish an RMI service without Spring.

Configuring an RMI service in Spring
Fortunately, Spring provides an easier way to publish RMI services using simple
POJOs. To start, you’ll need to write the service interface:

public interface PaymentService {
 public String authorizeCreditCard(String cardNumber,
 String cardHolderName, int expireMonth, int expireYear,
 float amount) throws AuthorizationException;

 public void settlePayment(String authCode, int merchantNumber,
 float amount) throws SettlementException;
}

Because the service interface doesn’t extend java.rmi.Remote and none of its
methods throw java.rmi.RemoteException, this trims the interface down a bit. But
more importantly, a client accessing the payment service through this interface
will not have to catch exceptions that they probably won’t be able to deal with.

 Next you’ll need to define the service implementation class. Listing 6.2 shows
how this service may be implemented.

public class PaymentServiceImpl implements PaymentService {

 public PaymentServiceImpl() {}

 public String authorizeCreditCard(String creditCardNumber,
 String cardHolderName, int expirationMonth,
 int expirationYear, float amount)
 throws AuthorizationException {

 String authCode = ...;

 // implement authorization

 return authCode;
 }

 public void settlePayment(String authCode, int accountNumber,
 float amount) throws SettlementException {
 // implement settlement

Listing 6.2 The payment service defined as a POJO
 }
}

Working with RMI 217

The next thing you’ll need to do is to configure PaymentServiceImpl as a <bean>
in the Spring configuration file:

<bean id="paymentService"
 class="org.springframework.payment.PaymentServiceImpl">
…
</bean>

Notice that there’s nothing about this version of PaymentServiceImpl that is
intrinsically RMI. It’s just a simple POJO suitable for declaration in a Spring con-
figuration file. In fact, it’s entirely possible to use this implementation in a non-
remote manner by wiring it directly into a client.

 But we’re interested in using this service remotely. So, the last thing to do is to
export PaymentServiceImpl as an RMI service. But instead of generating a server
skeleton and client stub using rmic and manually adding it to the RMI registry (as
you would in conventional RMI), you can use Spring’s RmiServiceExporter.

 RmiServiceExporter exports any Spring-managed bean as an RMI service. It
works by wrapping the bean in an adapter class. The adapter class is then bound
to the RMI registry and proxies requests to the service class—in this case Payment-
ServiceImpl:

<bean class="org.springframework.remoting.rmi.RmiServiceExporter">
 <property name="service">
 <ref bean="paymentService"/>
 </property>
 <property name="serviceName">
 <value>PayService</value>
 </property>
 <property name="serviceInterface">
 <value>com.springinaction.payment.PaymentService</value>
 </property>
</bean>

Here the paymentService bean is wired into the service property to indicate that
RmiServiceExporter is going to export the payment service as an RMI service. Just
as with RmiProxyFactoryBean described in section 6.2.1, the serviceName property
names the RMI service and the serviceInterface property specifies the interface
implemented by the service.

 RMI is an excellent way to communicate with remote services, but it has its lim-
itations. First, RMI has difficulty working across firewalls. That’s because RMI uses

arbitrary ports for communication—something firewalls typically will not allow.
In an intranet environment, this usually isn’t a concern, but if you are working on
the “evil Internet,” you’ll probably run into trouble with RMI. Even though RMI

218 CHAPTER 6
Remoting

has support for tunneling through HTTP (which is usually allowed by firewalls),
setting up the tunneling can be tricky.

 Another thing to consider is that RMI is Java-based. That means that both
the client and the service must be written in Java. This may or may not be an
issue for your application, but it is something to bear in mind when choosing
RMI for remoting.

 Caucho Technology (the same people behind the Resin application server)
has developed a remoting solution that addresses the limitations of RMI. Actually,
they have come up with two solutions: Hessian and Burlap. Let’s see how to use
Hessian and Burlap to work with remote services in Spring.

6.3 Remoting with Hessian and Burlap

Hessian and Burlap are two solutions provided by Caucho Technology (http://
www.caucho.com) that enable lightweight remote services over HTTP. They each
aim to simplify web services by keeping both their API and their communication
protocols as simple as possible.

 You may be wondering why Caucho has two solutions to the same problem.
Indeed, Hessian and Burlap are two sides of the same coin, but each serves
slightly different purposes. Hessian, like RMI, uses binary messages to communi-
cate between client and service. But unlike other binary remoting technologies
(such as RMI), the binary message is portable to languages other than Java. In
fact, Caucho has developed an implementation of Hessian for the Python pro-
gramming language.

 Burlap is an XML-based remoting technology, which automatically makes it
portable to any language that can parse XML. And because it’s XML, it is more
easily human-readable than Hessian’s binary format. But unlike other XML-based
remoting technologies (such as SOAP or XML-RPC), Burlap’s message structure is
as simple as possible and does not require an external definition language (e.g.,
WSDL or IDL).1

 Both Hessian and Burlap are also lightweight with regard to their size. Each is
fully contained in an 84K JAR file, with no external dependencies other than the
Java runtime libraries. This makes them both ideal for use in environments that
are constrained on memory, such as Java applets or handheld devices.
1 Burlap’s simplicity is evident even in its name. Caucho claims that they chose the name “Burlap” be-
cause of one simple reason: it’s boring.

Remoting with Hessian and Burlap 219

 You may be wondering how to make a choice between Hessian and Burlap. For
the most part, they are identical. The only difference is that Hessian messages are
binary and Burlap messages are XML. Because Hessian messages are binary, they
are more bandwidth-friendly. But if human-readability is important to you (for
debugging purposes) or if your application will be communicating with a lan-
guage for which there is no Hessian implementation (anything other than Java or
Python), then Burlap’s XML messages may be preferable.

 To demonstrate Hessian and Burlap services in Spring, let’s revisit the pay-
ment service problem that was solved with RMI in section 6.2. This time, how-
ever, we’ll look at how to solve the problem using Hessian and Burlap as the
remoting models.

6.3.1 Accessing Hessian/Burlap services

As you’ll recall from section 6.2.1, StudentServiceImpl has no idea that the pay-
ment service is an RMI service. All of the RMI details were completely contained
in the configuration of the beans in Spring’s configuration file. The good news is
that because of the client’s ignorance of the service’s implementation, switching
from an RMI client to a Hessian client is extremely easy, requiring no changes to
the client code.

 The bad news is that if you really like writing code, then this section may be a
bit of a letdown. That’s because the only difference between wiring the client side
of an RMI-based service and wiring the client side of a Hessian-based service is
that you’ll use Spring’s HessianProxyFactoryBean instead of RmiProxyFactory-
Bean. A Hessian-based payment service is declared in the client code like this:

<bean id="paymentService" class="org.springframework.
 remoting.caucho.HessianProxyFactoryBean">
 <property name="serviceUrl">
 <value>http://${serverName}/${contextPath}/pay.service</value>
 </property>
 <property name="serviceInterface">
 <value>com.springinaction.payment.PaymentService</value>
 </property>
</bean>

Just as with an RMI-based service, the serviceInterface property specifies the
interface that the service implements. And, as with RmiProxyFactoryBean, service-
Url indicates the URL of the service. Since Hessian is HTTP-based, it has been set
to an HTTP URL here (you’ll see how this URL is derived in the next section).

➥

 As it turns out, wiring a Burlap service is equally uninteresting. The only differ-
ence is that you’ll use BurlapProxyFactoryBean instead of HessianProxyFactoryBean:

220 CHAPTER 6
Remoting

<bean id="paymentService" class="org.springframework.
 remoting.caucho.BurlapProxyFactoryBean">
 <property name="serviceUrl">
 <value>http://${serverName}/${contextPath}/pay.service</value>
 </property>
 <property name="serviceInterface">
 <value>com.springinaction.payment.PaymentService</value>
 </property>
</bean>

Although we’ve made light of how uninteresting the configuration differences are
among RMI, Hessian, and Burlap services, this tedium is actually a benefit. It
means that you’ll be able to switch effortlessly between the various remoting tech-
nologies supported by Spring without having to learn a completely new model.
Once you’ve configured a reference to an RMI service, it’s short work to reconfig-
ure it as a Hessian or Burlap service.

 Now let’s switch to the other side of the conversation and expose the function-
ality of a Spring-managed bean as either a Hessian or Burlap service.

6.3.2 Exposing bean functionality with Hessian/Burlap

Again, let’s suppose that you are tasked with implementing the payment service
and exposing its functionality as a remote service. This time, however, you’re
going to expose it as a Hessian-based service.

 Even without Spring, writing a Hessian service is fairly trivial. You simply write
your service class to extend com.caucho.hessian.server.HessianServlet and
make sure that your service methods are public (all public methods are consid-
ered service methods in Hessian).

 Because Hessian services are already quite easy to implement, Spring doesn’t
do much to simplify the Hessian model any further. However, when used with
Spring, a Hessian service can take full advantage of the Spring framework in ways
that a pure Hessian service cannot. This includes using Spring AOP to advise a
Hessian service with systemwide services such as declarative transactions.

Exporting a Hessian service
Exporting a Hessian service in Spring is remarkably similar to implementing an
RMI service in Spring. In fact, if you followed the RMI example in section 6.2.2,
you’ve already done most of the work required to expose the payment service as a

➥

Hessian service.
 To expose the payment service as an RMI service, you configured an Rmi-

ServiceExporter bean in the Spring configuration file. In a very similar way, to

Remoting with Hessian and Burlap 221

expose the payment service as a Hessian service, you’ll need to configure another
exporter bean. This time, however, it will be a HessianServiceExporter:

<bean name="hessianPaymentService" class="org.springframework.
 remoting.caucho.HessianServiceExporter">
 <property name="service">
 <ref bean="paymentService"/>
 </property>
 <property name="serviceInterface">
 <value>com.springinaction.payment.PaymentService</value>
 </property>
</bean>

HessianServiceExporter performs the exact same function for a Hessian service
as RmiServiceExporter does for an RMI service. That is, it exposes the public
methods of a bean as methods of a Hessian service.

 Just as with RmiServiceExporter, the service property is wired with a reference
to the bean that implements the service. Here the service property is wired with
a reference to the paymentService bean. The serviceInterface property is set to
indicate that PaymentService is the interface that the service implements.

 Unlike with RmiServiceExporter, however, you do not need to set a service-
Name property. With RMI, the serviceName property is used to register a service in
the RMI registry. Hessian doesn’t have a registry and therefore there’s no need to
name a Hessian service.

Configuring the Hessian controller
Another major difference between RmiServiceExporter and HessianService-
Exporter is that because Hessian is HTTP-based, HessianServiceExporter is imple-
mented as a Spring MVC Controller. This means that in order to use exported
Hessian services, you’ll need to perform two additional configuration steps:

1 Configure a URL handler in your Spring configuration file to dispatch
Hessian service URLs to the appropriate Hessian service bean.

2 Configure a Spring DispatcherServlet in web.xml and deploy your
application as a web application.

You’ll learn the details of how Spring URL handlers and DispatcherServlet work
in chapter 8. But for now we’re only going to show you enough to expose the Hes-
sian payment service.

 In section 6.3.1, you configured the serviceUrl property on the client side to

➥

point to http://${serverName}/${contextPath}/pay.service. The ${server-

Name} and ${contextPath} are placeholders that are configured via Property-
PlaceholderConfigurer. The last part of the URL, /pay.service, is the part we’re

222 CHAPTER 6
Remoting

interested in here. This is the URL pattern that you’ll map the Hessian payment
service to.

 A URL handler maps a URL pattern to a specific Controller that will handle
requests. In the case of the Hessian payment service, you want to map /pay.service
to the hessianPaymentService bean as follows using SimpleUrlHandlerMapping:

<bean id="urlMapping" class="org.springframework.web.
 servlet.handler.SimpleUrlHandlerMapping">
 <property name="mappings">
 <props>
 <prop key="/pay.service">hessianPaymentService</prop>
 </props>
 </property>
</bean>

You’ll learn more about SimpleUrlHandlerMapping in chapter 8 (section 8.2.2).
For now, suffice it to say that the mappings property takes a set of properties
whose key is the URL pattern. Here it has been given a single property with a
key of /pay.service, which is the URL pattern for the payment service. The
value of the property is the name of a Spring Controller bean that will handle
requests to the URL pattern—in this case, hessianPaymentService.

 Because HessianServiceExporter is implemented as a controller in Spring
MVC, you must also configure Spring’s DispatcherServlet in web.xml:

<servlet>
 <servlet-name>credit</servlet-name>
 <servlet-class>
 org.springframework.web.servlet.DispatcherServlet
 </servlet-class>
 <load-on-startup>1</load-on-startup>
</servlet>

The name given to the servlet is significant because it is used by Dispatcher-
Servlet to locate the Spring configuration file. In this case, because the servlet is
named “credit”, the configuration file must be named “credit-servlet.xml”.

 One final step required to expose the Hessian service is to set up a serv-
let mapping:

<servlet-mapping>
 <servlet-name>credit</servlet-name>
 <url-pattern>*.service</url-pattern>
</servlet-mapping>

➥

Configured this way, any request whose URL ends with “.service” will be given to
DispatcherServlet, which will in turn hand off the request to the Controller that

Using Http invoker 223

is mapped to the URL. Thus requests to “/pay.service” will ultimately be handled
by the hessianPaymentService bean (which is actually just a proxy to Payment-
ServiceImpl).

Exporting a Burlap service
As an anticlimactic conclusion to this section, we thought you might like to also
see how to export a Spring-managed bean as a Burlap service. Spring’s Burlap-
ServiceExporter is used in place of HessianServiceExporter to perform this task.
For example, the following bean definition shows how to expose the payment ser-
vice as a Burlap service:

<bean name="burlapPaymentService"class="org.springframework.
 remoting.caucho.BurlapServiceExporter">
 <property name="service">
 <ref bean="paymentService"/>
 </property>
 <property name="serviceInterface">
 <value>com.springinaction.payment.PaymentService</value>
 </property>
</bean>

You’ll notice that aside from the bean’s name (which is purely arbitrary) and
the use of BurlapServiceExporter, this bean is identical to the hessianPayment-
Service. Configuring a Burlap service is otherwise the same as configuring a
Hessian service. This includes the need to set up a URL handler and the
DispatcherServlet.

 Hessian and Burlap address the firewall problems that RMI suffers from. And
both are lightweight enough to be used in constrained environments where mem-
ory and space are a premium, such as applets and wireless devices.

 But RMI has both Hessian and Burlap beat when it comes to serializing
objects that are sent in RPC messages. Whereas Hessian and Burlap both use a
proprietary serialization mechanism, RMI uses Java’s own serialization mecha-
nism. If your data model is complex, the Hessian/Burlap serialization model
may not be sufficient.

 There is a best-of-both-worlds solution. Let’s take a look at Spring’s HTTP
invoker, which offers RPC over HTTP (like Hessian/Burlap) while at the same time
using Java serialization of objects (like RMI).

6.4 Using Http invoker

➥

The Spring team recognized a void between RMI services and HTTP-based ser-
vices like Hessian and Burlap. On one side, RMI uses Java’s standard object

224 CHAPTER 6
Remoting

serialization but is difficult to use across firewalls. On the other side, Hessian/Bur-
lap work well across firewalls but use a proprietary object serialization mechanism.

 Thus Spring’s HTTP invoker was born. HTTP invoker is a new remoting
model created as part of the Spring framework to perform remoting across
HTTP (to make the firewalls happy) and using Java’s serialization (to make pro-
grammers happy).

 Working with HTTP invoker-based services is quite similar to working with
Hessian/Burlap-based services. To get started with HTTP invoker, let’s take
another look at the payment service—this time implemented as an HTTP invoker
payment service.

6.4.1 Accessing services via HTTP

To access an RMI service, you declared an RmiProxyFactoryBean that pointed to
the service. To access a Hessian service, you declared a HessianProxyFactoryBean.
And to access a Burlap service, you used BurlapProxyFactoryBean. Carrying this
monotony over to HTTP invoker, it should be of little surprise to you that to
access an HTTP invoker service, you’ll need to use HttpInvokerProxyFactoryBean.

 Had the payment service been exposed as an HTTP invoker-based service,
you could configure a bean that proxies it using HttpInvokerProxyFactoryBean
as follows:

<bean id="paymentService" class= "org.springframework.remoting.
 httpinvoker.HttpInvokerProxyFactoryBean">
 <property name="serviceUrl">
 <value>http://${serverName}/${contextPath}/pay.service</value>
 </property>
 <property name="serviceInterface">
 <value>com.springinaction.payment.PaymentService</value>
 </property>
</bean>

Comparing this bean definition to those in sections 6.2.1 and 6.3.1, you’ll find
that little has changed. The serviceInterface property is still used to indicate
interface implemented by the payment service. And the serviceUrl property is
still used to indicate the location of the remote payment service. Because HTTP
invoker is HTTP-based like Hessian and Burlap, the serviceUrl can contain the
same URL as with the Hessian and Burlap versions of the bean.

 Moving on to the other side of an HTTP invoker conversation, let’s now look at
how to export a bean’s functionality as an HTTP invoker-based service.

➥

Using Http invoker 225

6.4.2 Exposing beans as HTTP Services

You’ve already seen how to expose the functionality of PaymentServiceImpl as an
RMI service, as a Hessian service, and as a Burlap service. Next let’s rework the
payment service as an HTTP invoker service using Spring’s HttpInvokerService-
Exporter to export the payment service.

 At the risk of sounding like a broken record, we must tell you that exporting a
bean’s methods as remote method using HttpInvokerServiceExporter is very
much like what you’ve already seen with the other remote service exporters. In
fact, it’s virtually identical. For example, the following bean definition shows how
to export the paymentService bean as a remote HTTP invoker-based service:

<bean id="httpPaymentService" class="org.springframework.remoting.
 httpinvoker.HttpInvokerServiceExporter">
 <property name="service">
 <ref bean="paymentService"/>
 </property>
 <property name="serviceInterface">
 <value>com.springinaction.payment.PaymentService</value>
 </property>
</bean>

Feeling a strange sense of déjà vu? You may be having a hard time finding the dif-
ference between this bean declaration and the ones in section 6.3.2. In case the
bold text didn’t help you spot it, the only difference is the use of HttpInvoker-
ServiceExporter. Otherwise, this exporter is no different than the other remote
service exporters.

 HTTP invoker–based services, as their name suggests, are HTTP-based just like
Hessian and Burlap services. And, just like HessianServiceExporter and Burlap-
ServiceExporter, HttpInvokerServiceExporter is a Spring Controller. This means
that you’ll need to set up a URL handler to map an HTTP URL to the service:

<bean id="urlMapping" class="org.springframework.web.
 servlet.handler.SimpleUrlHandlerMapping">
 <property name="mappings">
 <props>
 <prop key="/pay.service">httpPaymentService</prop>
 </props>
 </property>
</bean>

And you’ll also need to deploy the payment service in a web application with

➥

➥

Spring’s DispatcherServlet configured in web.xml:

<servlet>
 <servlet-name>credit</servlet-name>

226 CHAPTER 6
Remoting

 <servlet-class>
 org.springframework.web.servlet.DispatcherServlet
 </servlet-class>
 <load-on-startup>1</load-on-startup>
</servlet>

<servlet-mapping>
 <servlet-name>credit</servlet-name>
 <url-pattern>*.service</url-pattern>
</servlet-mapping>

Configured this way, the payment service will be available at /pay.service, the
same URL as it was when exposed as either a Hessian or Burlap service.

 Spring’s HTTP invoker presents a best-of-both-worlds remoting solution com-
bining the simplicity of HTTP communication with Java’s built-in object serializa-
tion. This makes HTTP invoker services an appealing alternative to either RMI or
Hessian/Burlap.

 HTTP invoker has one significant limitation that you should keep in mind.
HTTP invoker is a remoting solution offered by the Spring framework only. This
means that both the client and the service must be Spring-enabled applications.
And, at least for now, this also implies that both the client and the service must be
Java-based.2

 Of all of the remoting technologies discussed so far, none has received as
much attention as Enterprise JavaBeans (EJBs). Indeed more words have proba-
bly been printed about EJB than any other Java technology. Let’s take a look at
how EJBs can fit into your Spring applications.

6.5 Working with EJBs

You may be surprised to find a section on how to use Spring with EJBs in this
book. Much of this book so far has shown you how to implement enterprise-class
applications without resorting to EJBs. A section on EJBs may seem a bit juxta-
posed in this book. So why are we talking about EJBs now?

 The fact is that although Spring provides a lot of functionality that gives
POJOs the power of EJBs, you may not always have the luxury of working on a
project that is completely EJB-free. On the one hand, you may have to interface

2 The Java-only nature of HTTP invoker may soon not be an issue. The Spring team has started a new

project to port the Spring framework to Microsoft .NET. This may open up HTTP invoker to be used
with .NET languages such as C# and Visual Basic (although how serialized Java objects get deserial-
ized in .NET is yet to be seen).

Working with EJBs 227

with other systems that expose their functionality through stateless session EJBs.
On the other hand, you may be placed in a project where for legitimate technical
(or perhaps political) reasons you must write EJB code.

 Whether your application is the client of an EJB or if you must write the EJB
itself, you don’t have to completely abandon all of the benefits of Spring in order
to work with EJBs. Spring provides support for EJBs in two ways:

■ Spring enables you to declare EJBs as beans within your Spring configura-
tion file. This makes it possible to wire EJB references into the properties
of your other beans as though the EJB was just another POJO.

■ Spring lets you write EJBs that act as a façade to Spring-configured beans.

Let’s start exploring Spring’s EJB abstraction features by looking at how to
declare EJBs as beans within the Spring configuration file.

6.5.1 Accessing EJBs

To illustrate Spring’s support for accessing EJBs, let’s return to the payment ser-
vice. This time, however, suppose that the payment service is implemented as a
legacy system that exposes its functionality through a stateless session EJB.3

 You may recall how to access EJBs in the traditional way. You know that you
must look up the home interface through JNDI. Perhaps you’ll write something
like this to look up the payment service’s home interface:

private PaymentServiceHome paymentServiceHome;
private PaymentServiceHome getPaymentServiceHome ()
 throws javax.naming.NamingException {

 if(paymentServiceHome != null)
 return paymentServiceHome;

 javax.naming.InitialContext ctx =
 new javax.naming.InitialContext();

 try {
 Object objHome = ctx.lookup("paymentService");

 PaymentServiceHome home =
 (PaymentServiceHome) javax.rmi.PortableRemoteObject.narrow(
 objHome, PaymentServiceHome.class);
3 Isn’t it interesting that we’re referring to an EJB-based system as a legacy system? My, how times have
changed!

228 CHAPTER 6
Remoting

 return home;
 } finally {
 ctx.close();
 }
}

Once you’ve got a reference to the home interface, you’ll then need to get a ref-
erence to the EJB’s remote (or local) interface and call its business methods. For
example, the following code shows how to call the payment service EJB’s authorize-
CreditCard() method:

try {
 PaymentServiceHome home = getPaymentServiceHome ();
 PaymentService paymentService = home.create();

 String authCode =
 paymentService.authorizeCreditCard(ccNumber, cardHolderName,
 expMonth, expYear, amount);
} catch (javax.rmi.RemoteException e) {
 throw new CreditException();
} catch (CreateException e) {
 throw new CreditException();
}

Wow, that’s a lot of code! What’s disturbing is that only a few lines have anything
to do with authorizing a credit card. Most of it is there just to obtain a reference to
the EJB. This seems like a lot of work just to make a single call to the EJB’s authorize-
CreditCard() method.

 Hold on. Throughout this book, you’ve seen ways to inject your application
beans with the services that they need. Beans don’t look up other beans…beans
are given to other beans. But this whole exercise of looking up an EJB via JNDI
and its home interface doesn’t seem to fit how the rest of the application is con-
structed. If you proceed to interact with the EJB in the traditional EJB way, it will
muddy up your code with lookup code and will definitely couple your application
with the EJB. Isn’t there a better way?

Proxying EJBs
As you’ve probably guessed from this lead-up, yes, there is a better way. Earlier in
this chapter we showed you how to configure proxies to various remote services,
including RMI, Hessian, Burlap, and HTTP invoker services. In much the same
way, Spring provides two proxy factory beans that proxy access to EJBs:
■ LocalStatelessSessionProxyFactoryBean—Used to access local EJBs (EJBs
in the same container as their clients).

Working with EJBs 229

■ SimpleRemoteStatelessSessionProxyFactoryBean—Used to access remote
EJBs (EJBs that are in a separate container from their clients).

To break the monotony of the first few sections of this chapter, you’ll configure
these proxy factory beans very differently than how you configured those for RMI,
Hessian/Burlap, and HTTP invoker. Let’s see how to use these beans to access the
payment service EJB. Suppose, for simplicity’s sake, that the EJB is a local EJB
with a JNDI name of payService. The following XML shows how to declare the
EJB within the Spring configuration file:

<bean id="paymentService" class="org.springframework.ejb.
 access.LocalStatelessSessionProxyFactoryBean"
 lazy-init="true">

 <property name="jndiName">
 <value>payService</value>
 </property>

 <property name="businessInterface">
 <value>com.springinaction.payment.PaymentService</value>
 </property>
</bean>

Because it is a local EJB, the LocalStatelessSessionProxyFactoryBean is the appro-
priate proxy factory bean class to use. You also set the jndiName property to pay-
mentService so that the proxy factory bean can look up the EJB’s home interface.

 An important thing to notice about this declaration is the lazy-init
attribute on the <bean> element. This is important when either of the EJB-
loading proxy factory beans is used in an ApplicationContext. This is because
ApplicationContext-style bean factories pre-instantiate singleton beans once
the Spring configuration file is loaded. This is usually a good thing, but it may
result in the EJB proxy factory beans attempting to look up the EJB’s home
interface before the EJB is bound in the naming service. Setting lazy-init to
true ensures that the “paymentService” will not attempt to look up the home
interface until it is first used—which should be plenty of time for the EJB to be
bound in the naming service.

 The businessInterface property is equivalent to the serviceInterface prop-
erty used with the other remote service proxy factory beans. Again it is set to
com.springinaction.payment.PaymentService to indicate that the service adheres
to the PaymentService interface.

➥

230 CHAPTER 6
Remoting

Wiring the EJB
Now let’s wire the payment service EJB into the studentService bean:

<bean id="studentService"
 class="com.springinaction.training.service.StudentServiceImpl">
…
 <property name="paymentService">
 <ref bean="paymentService"/>
 </property>
…
</bean>

Did you see that? Wiring the payment service EJB into the studentService bean
was no different than wiring a POJO. The paymentService bean (which just hap-
pens to be a proxy to the EJB) is simply injected into the paymentService property
of studentService.

 The wonderful thing about using a proxy factory bean to access the payment
service EJB is that you don’t have to write your own service locator or business del-
egate code. In fact, you don’t have to write any JNDI code of any sort. Nor must
you deal with the EJB’s home interface (or local home interface in this case).

 Furthermore, by hiding it all behind the PaymentService business interface,
the studentService bean isn’t even aware that it’s dealing with an EJB. As far as it
knows, it’s collaborating with a POJO. This is significant because it means that you
are free to swap out the EJB implementation of PaymentService with any other
implementation (perhaps even a mock implementation that’s used when unit-
testing StudentServiceImpl).

What’s going on?
You may be wondering how all this magic works. How were you able to wire in an
EJB as if it were just any other bean? Well, there’s a lot of stuff going on under the
covers of LocalStatelessSessionProxyFactoryBean that makes this possible.

 First, during startup, LocalStatelessSessionProxyFactoryBean uses the JNDI
name specified by the jndiName property to look up the EJB’s local home interface
via JNDI. It then caches this interface for later use so that it won’t have to do any
more JNDI calls.

 Then, every time a method is called on the PaymentService interface, the
proxy calls the create() method on the local home interface to retrieve a refer-
ence to the EJB. Finally, the proxy invokes the corresponding method on the EJB.
 All of this skullduggery gives the illusion that the payment service is a simple
POJO, when in fact there is interaction with an EJB. (Pretty sneaky, huh?)

Working with EJBs 231

Accessing a remote EJB

Now you’ve seen how to wire a local EJB into your Spring application. But if this
were a real-world application, the payment service EJB would more likely be a
remote EJB. In that case, you’d declare it in the Spring configuration file using
SimpleRemoteStatelessSessionProxyFactoryBean as follows:

<bean id="paymentService" class="org.springframework.ejb.
 access.SimpleRemoteStatelessSessionProxyFactoryBean"
 lazy-init="true">

 <property name="jndiName">
 <value>payService</value>
 </property>

 <property name="businessInterface">
 <value>com.springinaction.payment.PaymentService</value>
 </property>
</bean>

Notice that the only difference here is the choice of SimpleRemoteStateless-
SessionProxyFactoryBean. Other than that, Spring makes the choice between
local and remote EJBs transparent in the code that uses the EJB.

 But you’re probably wondering about java.rmi.RemoteException. How can
the choice between local and remote EJBs be completely transparent if invoking a
remote EJB method could throw a RemoteException? Doesn’t someone need to
catch that exception?

 This is one more benefit of using Spring’s EJB support to access EJBs. As
with RMI services, any RemoteExceptions thrown from EJBs are caught and then
rethrown as org.springframework.remoting.RemoteAccessException (which is
an unchecked exception). This makes catching the exception optional for the
EJB client.

 Now that you’ve seen how to wire EJBs into your Spring application, let’s look
at how Spring supports EJB development.

6.5.2 Developing Spring-enabled EJBs

Although Spring provides many capabilities that make it possible to implement
enterprise applications without EJBs, you may still find yourself needing to
develop your components as EJBs.

➥

 Up until this point, you’ve seen how Spring supports remoting by providing
service exporter classes that magically export POJOs into remote services. We hate

232 CHAPTER 6
Remoting

to disappoint you, but unfortunately Spring doesn’t provide an EjbService-
Exporter class that exports POJOs as EJBs. (But we do agree that such an exporter
would be really cool.)

 Nevertheless, Spring provides four abstract support classes to make develop-
ing EJBs a little bit easier:

■ AbstractMessageDrivenBean—Useful for developing message-driven beans
that accept messages from sources other than JMS (as allowed by the
EJB 2.1 specification)

■ AbstractJmsMessageDrivenBean—Useful for developing message-driven
beans that accept messages from JMS sources

■ AbstractStatefulSessionBean—Useful for developing stateful session EJBs
■ AbstractStatelessSessionBean—Useful for developing stateless session EJBs

These abstract classes simplify EJB development in two ways:

■ They provide default empty implementations of EJB life-cycle methods
(e.g., ejbActivate(), ejbPassivate(), ejbRemove()). These methods are
required per the EJB specification, but are typically implemented as
empty methods.

■ They provide access to a Spring bean factory. This makes it possible for
you to implement an EJB as a façade that delegates responsibility for the
business logic to Spring-configured POJOs.

For example, suppose that you were to expose the functionality of the course ser-
vice bean as a stateless session EJB. Listing 6.3 shows how you might implement
this EJB.

public class CourseServiceEjb extends AbstractStatelessSessionBean
 implements CourseService {

 private CourseService courseService;

 protected void onEjbCreate() {
 courseService =
 (CourseService) getBeanFactory().getBean("courseService");
 }

Listing 6.3 A stateless session EJB delegates responsibility for business logic to a POJO.

Declare the POJO

Look up the course service
 public Course getCourse(Integer id) {
 return courseService.getCourse(id);
 }

Delegate to the POJO

Using JAX-RPC web services 233

 public void createCourse(Course course) {
 courseService.createCourse(course);
 }

 public Set getAllCourses() {
 return courseService.getAllCourses();
 }

 public void enrollStudentInCourse(Course course, Student student)
 throws CourseException {
 courseService.enrollStudentInCourse(course, student);
 }
}

When the CourseServiceEjb is created, its onEjbCreate() method retrieves the
courseService bean from the Spring bean factory. Then, when any of its methods
are invoked, they delegate responsibility to the bean courseService bean.

 The big unanswered question regarding the EJB in listing 6.3 is where the
bean factory comes from. In typical J2EE fashion, the abstract EJB classes retrieve
the bean factory from JNDI. By default, they will look up the bean factory using
java:comp/env/ejb/BeanFactoryPath as the JNDI name. To look up the bean fac-
tory by another JNDI name, set the beanFactoryLocatorKey property before the
bean factory is loaded (in either the constructor or in the setSessionContext()
method). For example:

public void setSessionContext(SessionContext sessionContext) {
 super.setSessionContext(sessionContext);

 setBeanFactoryLocatorKey("java:comp/env/ejb/MyBeanFactory");
}

For good or bad, EJBs have certainly been the talk of the Java development com-
munity for several years. But web services are a remoting technology that have
generated buzz that transcends language and platform boundaries. To wrap up
this chapter, let’s see how Spring supports web services via JAX-RPC.

6.6 Using JAX-RPC web services

JAX-RPC is short for “Java APIs for XML-based remote procedure call.” That’s
a mouthful of words that simply means that JAX-RPC is a means for Java pro-

Delegate to
the POJO

Delegate to
the POJO
grams to access remote services using XML. In particular, the services are web
services that expose their functionality using the Simple Object Access Proto-
col (SOAP).

234 CHAPTER 6
Remoting

 The ins and outs of JAX-RPC and SOAP-based web services are outside the
scope of this book. We’re going to assume that you are already familiar with the
basics of SOAP and JAX-RPC. If you need a primer or a refresher on JAX-RPC
and SOAP, take a look at J2EE Web Services by Richard Monson-Haefel (Addison-
Wesley, 2003).

 To illustrate Spring’s support for web service access through JAX-RPC, we
could revisit the payment service again, but you’re probably growing quite weary
of the monotony (we know that we are). So, for JAX-RPC, we thought you’d appre-
ciate a break from the payment service example. Instead we’re going to work with
a Babel Fish service.

 If you’ve ever read The Hitchhiker’s Guide to the Galaxy, you probably already
know what a Babel Fish is. For those of you who don’t know what we’re talking
about, a Babel Fish is a small yellow fish that, when placed in the ear, translates
one spoken language to another. In short, it enables anyone with the fish placed
in their ear to understand anything that is spoken, regardless of what language it
is spoken in.

 We recognize that most readers probably don’t have access to a real Babel Fish
(and even if you did, you might find it creepy to put a fish in your ear). But there
is a web service that performs a similar function. In fact, it is appropriately named
“BabelFishService.” You can find the Web Service Definition Language (WSDL)
file for the Babel Fish web service at the following URL: http://www.xmethods.com/
sd/2001/BabelFishService.wsdl.

6.6.1 Referencing a web service with JAX-RPC

To use the Babel Fish web service, you’ll need to create an interface that defines
the service. Looking at the WSDL, you’ll find that the Babel Fish web service has
a single operation called BabelFish. This operation takes two arguments: A
String that indicates the translation mode (see SIDEBAR) and another String
that is the original untranslated text. It returns a String that contains the trans-
lated text. BabelFishRemote.java (listing 6.4) shows the remote interface that
defines this service.

package com.springinaction.chapter06.babelfish;

Listing 6.4 The remote interface for the Babel Fish web service
import java.rmi.Remote;
import java.rmi.RemoteException;

Using JAX-RPC web services 235

public interface BabelFishRemote extends Remote {
 public String BabelFish(String translationMode,
 String sourceData) throws RemoteException;
}

SIDEBAR The translation mode is made up of two language codes separated by an
underscore (_). Some valid language codes are “en” for English, “fr” for
French, “dr” for German, and “es” for Spanish. The language code that
precedes the underscore is the language that the source text is in. The
language code that is after the underscore is the language that you want
to the source text to be translated to. For example, a translation mode of
“de_en” will translate German text into English text.

The BabelFishRemote interface contains the single BabelFish() method. This
method name comes from the operation name in the WSDL. Unfortunately this
web service begins with a capital “B,” unlike Java conventions where method
names begin with lowercase letters. The following code shows how you might
obtain a reference to the Babel Fish service using conventional JAX-RPC (that is,
without Spring’s help):

String wsdlDocumentUrl =
 "http://www.xmethods.com/sd/2001/BabelFishService.wsdl";
String namespaceUri =
 "http://www.xmethods.net/sd/BabelFishService.wsdl";
String serviceName = "BabelFishService";
String portName = "BabelFishPort";
QName serviceQN = new QName(namespaceUri, serviceName);
QName portQN = new QName(namespaceUri, portName);

ServiceFactory sf = ServiceFactory.newInstance();
Service service =
 sf.createService(new URL(wsdlDocumentUrl), serviceQN);

BabelFishRemote babelFish = (BabelFishRemote)
 service.getPort(BabelFishRemote.class, portQN);

With a reference to the service in hand, you can use it to translate any text you
want. For example, to translate “Hello world” from English (en) to Spanish (es):

String translated = babelFish.BabelFish("en_es", "Hello World");

Likewise, you could translate from Spanish (es) to French (fr) using the following:
String translated = babelFish.BabelFish("es_fr", "Hola Mundo");

236 CHAPTER 6
Remoting

Or from French (fr) to German (de):

String translated = babelFish.BabelFish("fr_de", "Bonjour Monde");

The Babel Fish service is a lot of fun, but one problem with the standard JAX-RPC
approach is that it results in a lot of code just to be able to look up the payment
service. To make it a bit briefer, you could take the approach recommended by
JSR-109 (Implementing Enterprise Web Services) and use JNDI to retrieve the
web service:

Context ic = new InitialContext();
BabelFishService babelFishService =
 (BabelFishService) ic.lookup("java:comp/env/service/BabelFish");
BabelFishRemote babelFish =
 (BabelFishRemote) babelFishService.getBabelFishPort();

But, even though the JNDI version is more concise, it still leaves the client respon-
sible for obtaining its own reference to the service. In doing that, it doesn’t
embrace the spirit of inversion of control. What’s more, it places the burden of
handling RemoteExceptions on the client.

 Now that you’ve seen the conventional way to access a web service using JAX-
RPC, let’s see the Spring way to do it.

6.6.2 Wiring a web service in Spring

Just as with the other remoting technologies discussed in this chapter, Spring
provides a proxy factory bean, JaxRpcPortProxyFactoryBean, that enables you to
seamlessly wire a web service in as a collaborator of another bean in the applica-
tion. Under the hood, JaxRpcPortProxyFactoryBean uses JAX-RPC to access the
remote web service.

 The XML in listing 6.5 shows how to declare the Babel Fish service as a bean in
the Spring configuration file.

<bean id="babelFish" class="org.springframework.remoting.
 jaxrpc.JaxRpcPortProxyFactoryBean">

 <property name="wsdlDocumentUrl">
 <value>http://www.xmethods.com/sd/2001/

Listing 6.5 The Babel Fish service as a bean in the Spring application context

➥

b

 BabelFishService.wsdl</value>
 </property>

➥

Using JAX-RPC web services 237

 <property name="serviceInterface">
 <value>com.springinaction.chapter06.babelfish.
 BabelFishService</value>
 </property>

 <property name="portInterface">
 <value>com.habuma.remoting.client.BabelFishRemote</value>
 </property>

 <property name="namespaceUri">
 <value>http://www.xmethods.net/sd/BabelFishService.wsdl</value>
 </property>

 <property name="serviceName">
 <value>BabelFishService</value>
 </property>

 <property name="portName">
 <value>BabelFishPort</value>
 </property>

 <property name="serviceFactoryClass">
 <value>org.apache.axis.client.ServiceFactory</value>
 </property>
</bean>

The first property set on this JaxRpcPortProxyFactoryBean is wsdlDocumentUrl b.
This tells the proxy where the web service’s WSDL document is.

 The serviceInterface property c defines the interface that the client of the
Babel Fish service uses to access the service. Here it has been set to use the
BabelFishService interface, which is defined as follows:

public interface BabelFishService {
 public String BabelFish(String translationMode,
 String sourceData);
}

The BabelFishService interface closely resembles the remote interface, which is
set to the portInterface property d. The difference is that the remote interface
is considered an RMI interface in that it extends javax.rmi.Remote and the
BabelFish() method throws javax.rmi.RemoteException. JaxRpcPortProxy-

FactoryBean uses the BabelFishRemote interface when it accesses the remote ser-

c
➥

d

e

f

g

h

vice. But if any RemoteExceptions are thrown, the proxy will catch them and
rethrow them as (runtime) RemoteAccessExceptions so that the client won’t have
to deal with them.

238 CHAPTER 6
Remoting

 The next three properties are used to construct qualified names (QNames) for
the Babel Fish service and its port. The namespaceUri property e is used with the
serviceName property f to construct the QName for the service and is also used
with the portName property g to construct a QName for the port. The values of all
three of these fields can be found by examining in the WSDL definition for the
Babel Fish service.

 By default, JaxRpcPortProxyFactoryBean uses javax.xml.rpc.ServiceFactory
as its service factory. But you may choose to use another service factory, such as
Apache Axis’s service factory, by setting the serviceFactoryClass property h.

 With the Babel Fish service configured in the Spring configuration file in this
way, you can use it just like you would any other bean in the application context.
This includes retrieving it from the application context directly or wiring it as a
collaborator into a property on another bean. For example, use this to pull the
bean out of the application context directly:

ApplicationContext context =
 new FileSystemXmlApplicationContext("babelFish.xml");
BabelFishService babelFish =
 (BabelFishService) context.getBean(babelFish);
String translated = babelFish.BabelFish("en_es", "Hello World");

When the previous snippet of code is complete, the translated variable will con-
tain the text “Hola Mundo,” which is the Spanish way of saying “Hello World.”

For fun, here are some other phrases you might try to translate using the
Babel Fish service:

■ “Qui a couple le fromage” using “fr_en” as the translation mode
■ “Mi perro is muy feo” using “es_en” as the translation mode
■ “Ich habe eine socke voll der Zehen” using “de_en” as the transla-

tion mode
■ “No me gusto a comer los cocos” using “es_en” as the translation mode
■ “Mon volleyball est mon meilleur ami” using “fr_en” as the transla-

tion mode

6.7 Summary

Working with remote services is typically a tedious chore. But Spring provides

FUN WITH
A BABEL

FISH
remoting support that makes working with remote services as simple as working
with any regular JavaBean.

Summary 239

 On the client side, Spring provides proxy factory beans that enable you to con-
figure remote services in your Spring application. Regardless of whether you are
using RMI, Hessian, Burlap, HTTP invoker, EJB, or web services, you can wire
remote services into your application as if they were POJOs. Spring even catches
any RemoteExceptions that are thrown and rethrows runtime RemoteAccessExcep-
tions in their place, freeing your code from having to deal with an exception that
it probably can’t recover from.

 Spring’s support for the service side is varied. For RMI, Hessian, Burlap, and
HTTP invoker services, Spring provides remote exporters that expose the func-
tionality of your Spring-managed beans as remote services to be consumed by
another application. Although Spring doesn’t enable you to export POJOs as EJB,
it does provide support classes that make it possible for your EJBs to access a
Spring application context.

 Even though Spring hides many of the details of remote services, making
them appear as though they are local JavaBeans, you should bear in mind the
consequences of remote services. Remote services, by their nature, are typically
less efficient than local services. You should take this into consideration when
writing code that accesses remote services, limiting remote calls to avoid perfor-
mance bottlenecks.

 In the next chapter, you’ll learn how to use Spring’s support for several enter-
prise services, including JNDI, e-mail, scheduling, and messaging.

Accessing enterprise services
This chapter covers
■ Accessing JNDI resources
■ Sending and formatting email
■ Scheduling tasks
■ Integrating with EJBs
240

Retrieving objects from JNDI 241

There are several enterprise services that Spring doesn’t support directly. Instead
Spring relies on other APIs to provide the services, but then places them under an
abstraction layer so that they’re easier to use.

 You’ve already seen a few of Spring’s abstraction layers. In chapter 4, you saw how
Spring abstracts JDBC and Hibernate. In addition to eliminating the need to write
certain boilerplate code, these abstractions eliminated the need for you to catch
checked exceptions.

 In this chapter, we’re going to take a whirlwind tour of the abstraction layers that
Spring provides for several enterprise services, including Spring’s support for

■ Java Naming and Directory Interface (JNDI)
■ E-mail
■ Scheduling
■ Java Message Service (JMS)

We’ll begin by looking at Spring’s support for JNDI, since this provides the basis
for several of the other abstraction layers.

7.1 Retrieving objects from JNDI

JNDI affords Java applications a central repository to store application objects.
For example, a typical J2EE application uses JNDI to store and retrieve such
things as JDBC data sources and JTA transaction managers.

 But why would you want to configure these objects in JNDI instead of in
Spring? Certainly, you could configure a DataSource object in Spring’s configura-
tion file, but you may prefer to configure it in an application server to take advan-
tage of the server’s connection pooling. Likewise, if your transactional
requirements demand JTA transaction support, you’ll need to retrieve a JTA
transaction manager from the application server’s JNDI repository.

 Spring’s JNDI abstraction makes it possible to declare JNDI lookups in your
application’s configuration file. Then you can wire those objects into the proper-
ties of other beans as though the JNDI object were just another POJO. Let’s take a
look at how to use Spring’s JNDI abstraction to simplify lookup of objects in JNDI.

7.1.1 Working with conventional JNDI
Looking up objects in JNDI can be a tedious chore. For example, suppose you
need to retrieve a javax.sql.DataSource from JNDI. Using the conventional JNDI
APIs, your might write some code that looks like this:

242 CHAPTER 7
Accessing enterprise services

InitialContext ctx = null;

try {

 ctx = new InitialContext();

 DataSource ds =

 (DataSource)ctx.lookup("java:comp/env/jdbc/myDatasource");

} catch (NamingException ne) {

 // handle naming exception

 …

} finally {

 if(ctx != null) {

 try {

 ctx.close();

 } catch (NamingException ne) {}

 }
}

At first glance, this may not look like a big deal. But take a closer look. There are
a few things about this code that make it a bit clumsy:

■ You must create and close an initial context for no other reason than to
look up a DataSource. This may not seem like a lot of extra code, but it is
extra plumbing code that is not directly in line with the goals of your appli-
cation code.

■ You must catch or, at very least, rethrow a javax.naming.NamingException.
If you choose to catch it, you must deal with it appropriately. If you choose
to rethrow it, then the calling code will be forced to deal with it. Ultimately,
someone somewhere will have to deal with the exception.

■ You code is tightly coupled with a JNDI lookup. All your code needs is a
DataSource. It doesn’t matter whether or not it comes from JNDI. But if
your code contains code like that shown earlier, you’re stuck retrieving the
DataSource from JNDI.

■ Your code is tightly coupled with a specific JNDI name—in this case
java:comp/env/jdbc/myDatasource. Sure, you could extract that name into
a properties file, but then you’ll have to add even more plumbing code to

look up the JNDI name from the properties file.

Retrieving objects from JNDI 243

The overall problem with the conventional approach to looking up objects in
JNDI is that it is the antithesis of dependency injection. Instead of your code
being given an object, your code must go get the object itself. This means that
your code is doing stuff that isn’t really its job. It also means that your code is
unnecessarily coupled to JNDI.

 Regardless, this doesn’t change the fact that sometimes you need to be able to
look up objects in JNDI. DataSources are often configured in an application
server, to take advantage of the application server’s connection pooling, and then
retrieved by the application code to access the database. How can you get all the
benefits of JNDI along with all of the benefits of dependency injection?

7.1.2 Proxying JNDI objects

Spring’s JndiObjectFactoryBean gives you the best of both worlds. It is a factory
bean, which means that when it is wired into a property, it will actually create
some other type of object that will wire into that property. In the case of Jndi-
ObjectFactoryBean, it will wire an object retrieved from JNDI.

 To illustrate how this works, let’s revisit an example from chapter 4
(section 4.1.2). There you used JndiObjectFactoryBean to retrieve a DataSource
from JNDI:

<bean id="dataSource"
 class="org.springframework.jndi.JndiObjectFactoryBean"
 singleton="true">
 <property name="jndiName">
 <value>java:comp/env/jdbc/myDatasource</value>
 </property>
</bean>

The jndiName property specifies the name of the object in JNDI. Here the full
JNDI name of java:comp/env/jdbc/myDatasource is specified. However, if the
object is a Java resource, you may choose to leave off java:comp/env/ to specify
the name more concisely. For example, the following declaration of the jndiName
property is equivalent to the previous declaration:

<property name="jndiName">
 <value>jdbc/myDatasource</value>
</property>

With the dataSource bean declared, you may now inject it into a DataSource prop-
erty. For instance, you may use it to configure a Hibernate session factory as follows:
<bean id="sessionFactory" class="org.springframework.orm.
 hibernate.LocalSessionFactoryBean">
 <property name="dataSource">

➥

244 CHAPTER 7
Accessing enterprise services

 <ref bean="dataSource"/>
 </property>
…
</bean>

When Spring wires the sessionFactory bean, it will inject the DataSource object
retrieved from JNDI into the session factory’s dataSource property.

 The great thing about using JndiObjectFactoryBean to look up an object in
JNDI is that the only part of the code that knows that the DataSource is
retrieved from JNDI is the XML declaration of the dataSource bean. The session-
Factory bean doesn’t know (or care) where the DataSource came from. This
means that if you decide that you would rather get your DataSource from a
JDBC driver manager, all you need to do is redefine the dataSource bean to be
a DriverManagerDataSource.

 We’ll see even more uses of JNDI later in this chapter. But first, let’s switch
gears a bit and look at another abstraction provided by the Spring framework—
Spring’s e-mail abstraction layer.

7.2 Sending e-mail

Suppose that the course director of Spring Training has asked you to send her a
daily e-mail outlining all of the upcoming courses, including a seat count and
how many students have enrolled in the course. She’d like this report to be
e-mailed at 6:00 a.m. every day so that she can see it when she first gets to work.
Using this report, she’ll schedule additional offerings of popular courses and can-
cel courses that aren’t filling up very quickly.

 As laziness is a great attribute of any programmer,1 you decide to automate the
e-mail so that you don’t have to pull together the report every day yourself.

 The first thing to do is to write the code that sends the e-mail (you’ll schedule
it for daily delivery in section 7.3).

 To get started, you’ll need a mail sender, defined by Spring’s MailSender inter-
face. A mail sender is an abstraction around a specific mail implementation. This
decouples the application code from the actual mail implementation being used.
Spring comes with two implementations of this interface:
1 The other two attributes of a programmer are impatience and hubris. See Programming Perl, 3rd Edi-
tion, by Larry Wall et al. (O’Reilly & Associates, 2000).

Sending e-mail 245

■ CosMailSenderImpl—Simple implementation of an SMTP mail sender
based on Jason Hunter’s COS (com.oreilly.servlet) implementation
from his Java Servlet Programming book (O’Rielly, 1998).

■ JavaMailSenderImpl—A JavaMail API-based implementation of a mail
sender. Allows for sending of MIME messages as well as non-SMTP mail (such
as Lotus Notes).

Either MailSender implementation is sufficient for the purposes of sending the
report to the course director. But we’ll choose JavaMailSenderImpl since it is
the more versatile of the two. You’ll declare it in your Spring configuration file
as follows:

<bean id="mailSender"
 class="org.springframework.mail.javamail.JavaMailSenderImpl">
 <property name="host">
 <value>mail.springtraining.com</value>
 </property>
</bean>

The host property specifies the host name of the mail server, in this case Spring
Training’s SMTP server. By default, the mail sender assumes that the port is lis-
tening on port 25 (the standard SMTP port), but if your SMTP server is listening
on a different port, you can set it using the port property of JavaMailSenderImpl.

 The mailSender declaration above explicitly names the mail server that will
send the e-mails. However, if you have a javax.mail.MailSession in JNDI (per-
haps placed there by your application server) you have the option to retrieve it
from JNDI instead. Simply use JndiObjectFactoryBean (as described in
section 7.1) to retrieve the mail session and then wire it into the mailSession
property as follows:

<bean id="mailSession"
 class="org.springframework.jndi.JndiObjectFactoryBean">
 <property name="jndiName">
 <value>java:comp/env/mail/Session</value>
 </property>
</bean>

<bean id="mailSender"
 class="org.springrframework.mail.javamail.JavaMailSenderImpl">
 <property name="session"><ref bean="mailSession"/></property>
</bean>
Now that the mail sender is set up, it’s ready to send e-mails. But you might want
to declare a template e-mail message:

246 CHAPTER 7
Accessing enterprise services

<bean id="enrollmentMailMessage"
 class="org.springframework.mail.SimpleMailMessage">
 <property name="to">
 <value>coursedirector@springtraining.com</value>
 </property>
 <property name="from">
 <value>system@springtraining.com</value>
 </property>
 <property name="subject">
 <value>Course enrollment report</value>
 </property>
</bean>

Declaring a template e-mail message is optional. You could also create a new
instance of SimpleMailMessage each time you send the e-mail. But by declaring a
template in the Spring configuration file, you won’t hard-code the e-mail
addresses or subject in Java code.

 The next step is to add a mailSender property to CourseServiceImpl so that
CourseServiceImpl can use it to send the e-mail. Likewise, if you declared an
e-mail template you should add a message property that will hold the message
template bean:

public class CourseServiceImpl implements CourseService {
…
 private MailSender mailSender;
 public void setMailSender(MailSender mailSender) {
 this.mailSender = mailSender;
 }

 private SimpleMailMessage mailMessage;
 public void setMailMessage(SimpleMailMessage mailMessage) {
 this.mailMessage = mailMessage;
 }
…
}

Now that CourseServiceImpl has a MailSender and a copy of the e-mail template,
you can write the sendCourseEnrollementReport() method (listing 7.1) that sends
the e-mail to the course director. (Don’t forget to add a declaration of sendCourse-
EnrollmentReport() to the CourseService interface.)

public void sendCourseEnrollmentReport() {

Listing 7.1 Sending the enrollment report e-mail
 Set courseList = courseDao.findAll();

 SimpleMailMessage message =
 new SimpleMailMessage(this.mailMessage);

Copy mail
template

Sending e-mail 247

 StringBuffer messageText = new StringBuffer();
 messageText.append(
 "Current enrollment data is as follows:\n\n");

 for(Iterator iter = courseList.iterator(); iter.hasNext();) {
 Course course = (Course) iter.next();
 messageText.append(course.getId() + " ");
 messageText.append(course.getName() + " ");
 int enrollment = courseDao.getEnrollment(course);
 messageText.append(enrollment);
 }

 message.setText(messageText.toString());

 try {
 mailSender.send(message);
 } catch (MailException e) {
 LOGGER.error(e.getMessage());
 }
}

The sendCourseEnrollmentReport() starts by retrieving all courses using the
CourseDao. Then, it creates a working copy of the e-mail template so that the orig-
inal will remain untouched. It then constructs the message body and sets the mes-
sage text. Finally, the e-mail is sent using the mailSender property.

 The final step is to wire the mailSender and enrollmentMailMessage beans into
the courseService bean:

<bean id="courseService"
 class="com.springinaction.training.service.CourseServiceImpl">
…
 <property name="mailMessage">
 <ref bean="enrollmentMailMessage"/>
 </property>

 <property name="mailSender">
 <ref bean="mailSender"/>
 </property>
</bean>

Now that the courseService bean has everything it needs to send the enrollment
report, the job is half done. Now the only thing left is to set it up on a schedule to
send to the course director on a daily basis. Gee, it would be great if Spring had a

Set mail text

Send e-mail
way to help us schedule tasks...

248 CHAPTER 7
Accessing enterprise services

7.3 Scheduling tasks

Not everything that happens in an application is the result of a user action. Some-
times the software itself initiates an action.

 The enrollment report e-mail, for example, should be sent to the course direc-
tor every day. To make this happen, you have two choices: You can either come in
early every morning to e-mail the report manually or you can have the applica-
tion perform the e-mail on a predefined schedule. (We think we know which one
you would choose.)

 Two popular scheduling APIs are Java’s Timer class and OpenSymphony’s
Quartz scheduler.2 Spring provides an abstraction layer for both of these sched-
ulers to make working with them much easier. Let’s look at both abstractions,
starting with the simpler one, Java’s Timer.

7.3.1 Scheduling with Java’s Timer

Starting with Java 1.3, the Java SDK has included rudimentary scheduling func-
tionality through its java.util.Timer class. This class lets you schedule a task
(defined by a subclass java.util.TimerTask) to occur every so often.

Creating a timer task
The first step in scheduling the enrollment report e-mail using Java’s Timer is to
create the e-mail task by subclassing java.util.TimerTask, as shown in listing 7.2.

public class EmailReportTask extends TimerTask {
 public EmailReportTask() {}

 public void run() {
 courseService.sendCourseEnrollmentReport();
 }

 private CourseService courseService;
 public void setCourseService(CourseService courseService) {
 this.courseService = courseService;
 }
}

Listing 7.2 A timer task to e-mail the enrollment report

Send the report

Inject the
CourseService
2 Quartz is an open source job scheduling system from the OpenSymphony project. You can learn more
about Quartz at http://www.opensymphony.com/quartz/.

Scheduling tasks 249

The run() method defines what to do when the task is run. In this case, it calls the
sendCourseEnrollmentReport() of the CourseService (see listing 7.1) to send the
enrollment e-mail. As for the CourseService, it will be supplied to EmailReport-
Task via dependency injection.

 Declare the EmailReportTask in the Spring configuration file like this:

<bean id="reportTimerTask"
 class="com.springinaction.training.schedule.EmailReportTask">
 <property name="courseService">
 <ref bean="courseService"/>
 </property>
</bean>

By itself, this declaration simply places the EmailReportTask into the application
context and wires the courseService bean into the courseService property. It
won’t do anything useful until you schedule it.

Scheduling the timer task
Spring’s ScheduledTimerTask defines how often a timer task is to be run. Since
the course director wants the enrollment report e-mailed to her every day, a
ScheduledTimerTask should be wired as follows:

<bean id="scheduledReportTask"
 class="org.springframework.scheduling.timer.ScheduledTimerTask">
 <property name="timerTask">
 <ref bean="reportTimerTask"/>
 </property>
 <property name="period">
 <value>86400000</value>
 </property>
</bean>

The timerTask property tells the ScheduledTimerTask which TimerTask to run.
Here it is wired with a reference to the reportTimerTask bean, which is the Email-
ReportTask. The period property is what tells the ScheduledTimerTask how often
the TimerTask’s run() method should be called. This property, specified in milli-
seconds, is set to 86400000 to indicate that the task should be kicked off every
24 hours.

Starting the timer
The final step is to start the timer. Spring’s TimerFactoryBean is responsible for
starting timer tasks. Declare it in the Spring configuration file like this:
<bean class="org.springframework.scheduling.timer.TimerFactoryBean">
 <property name="scheduledTimerTasks">

250 CHAPTER 7
Accessing enterprise services

 <list>
 <ref bean="scheduledReportTask"/>
 </list>
 </property>
</bean>

The scheduledTimerTasks property takes an array of timer tasks that it should
start. Since you only have one timer task right now, the list contains a single ref-
erence to the scheduledReportTask bean.

 Unfortunately, even though the task will be run every 24 hours, there is no way
to specify what time of the day it should be run. ScheduledTimerTask does have a
delay property that lets you specify how long to wait before the task is first run.
For example, to delay the first run of EmailReportTask by an hour:

<bean id="scheduledReportTask"
 class="org.springframework.scheduling.timer.ScheduledTimerTask">
 <property name="timerTask">
 <ref bean="reportTimerTask"/>
 </property>
 <property name="period">
 <value>86400000</value>
 </property>
 <property name="delay">
 <value>3600000</value>
 </property>
</bean>

Even with the delay, however, the time that the EmailReportTask will run will be
relative to when the application starts. How can you have it sent at 6:00 a.m. every
morning as requested by the course director (aside from starting the application
at 5:00 a.m.)?

 Unfortunately, that’s a limitation of using Java’s Timer. You can specify how
often a task runs, but you can’t specify exactly when it will be run. In order to specify
precisely when the e-mail is sent, you’ll need to use the Quartz scheduler instead.

7.3.2 Using the Quartz scheduler

The Quartz scheduler provides richer support for scheduling jobs. Just as with
Java’s Timer, you can use Quartz to run a job every so many milliseconds. But
Quartz goes beyond Java’s Timer by enabling you to schedule a job to run at a par-
ticular time and/or day.

 For more information about Quartz, visit the Quartz home page at http://

www.opensymphony.com/quartz.

 Let’s start working with Quartz by defining a job that sends the report e-mail.

Scheduling tasks 251

Creating a job
The first step in defining a Quartz job is to create the class that defines the job.
For that, you’ll subclass Spring’s QuartzJobBean, as shown in listing 7.3.

public class EmailReportJob extends QuartzJobBean {

 public EmailReportJob() {}

 protected void executeInternal(JobExecutionContext context)
 throws JobExecutionException {

 courseService.sendCourseEnrollmentReport();
 }

 private CourseService courseService;
 public void setCourseService(CourseService courseService) {
 this.courseService = courseService;
 }
}

A QuartzJobBean is the Quartz equivalent of a Java TimerTask. It is an implemen-
tation of the org.quartz.Job interface. The executeInternal() method defines
the actions that the job does when its time comes. Here, just as with EmailReport-
Task, you simply call the sendCourseEnrollmentReport() method on the course-
Service property.

 Declare the job in the Spring configuration file as follows:

<bean id="reportJob"
 class="org.springframework.scheduling.quartz.JobDetailBean">
 <property name="jobClass">
 <value>com.springinaction.training.
 schedule.EmailReportJob</value>
 </property>
 <property name="jobDataAsMap">
 <map>
 <entry key="courseService">
 <ref bean="courseService"/>
 </entry>
 </map>
 </property>
</bean>

Listing 7.3 Defining a Quartz job

Send enrollment report

Inject
CourseService

➥

Notice that you don’t declare an EmailReportJob bean directly. Instead you
declare a JobDetailBean. This is an idiosyncrasy of working with Quartz.

252 CHAPTER 7
Accessing enterprise services

JobDetailBean is a subclass of Quartz’s org.quartz.JobDetail, which requires that
the Job object be set through the jobClass property.

 Another quirk of working with Quartz’s JobDetail is that the courseService
property of EmailReportJob is set indirectly. JobDetail’s jobDataAsMap takes a
java.util.Map that contains properties that are to be set on the jobClass. Here,
the map contains a reference to the courseService bean with a key of course-
Service. When the JobDetailBean is instantiated, it will inject the courseService
bean into the courseService property of EmailReportJob.

Scheduling the job
Now that the job is defined, you’ll need to schedule the job. Quartz’s
org.quartz.Trigger class decides when and how often a Quartz job should
run. Spring comes with two triggers, SimpleTriggerBean and CronTriggerBean.
Which trigger should you use? Let’s take a look at both of them, starting with
SimpleTriggerBean.

 SimpleTriggerBean is similar to ScheduledTimerTask. Using it, you can specify
how often a job should run and (optionally) how long to wait before running the
job for the first time. For example, to schedule the report job to run every 24
hours, with the first run starting after one hour, declare it as follows:

<bean id="simpleReportTrigger"
 class="org.springframework.scheduling.quartz.SimpleTriggerBean">
 <property name="jobDetail">
 <ref bean="reportJob"/>
 </property>
 <property name="startDelay">
 <value>3600000</value>
 </property>
 <property name="repeatInterval">
 <value>86400000</value>
 </property>
</bean>

The jobDetail property is wired to the job that is to be scheduled, here the
reportJob bean. The repeatInterval property tells the trigger how often to run
the job (in milliseconds). Here, we’ve set it to 86400000 so that it gets triggered
every 24 hours. And the startDelay property can be used (optionally) to delay the
first run of the job. We’ve set it to 3600000 so that it waits an hour before firing off
for the first time.

Scheduling tasks 253

Scheduling a cron job
Although you can probably think of many applications for which SimpleTrigger-
Bean is perfectly suitable, it isn’t sufficient for e-mailing the enrollment report.
Just as with ScheduledTimerTask, you can only specify how often the job is run—
not exactly when it is run. Therefore, you can’t use SimpleTriggerBean to send the
enrollment report to the course directory at 6:00 a.m. every day.

 CronTriggerBean, however, gives you more precise control over when your job
is run. If you’re familiar with the Unix cron tool, then you’ll feel right at home
with CronTriggerBean. Instead of declaring how often a job is run you get to spec-
ify exact times (and days) for the job to run. For example, to run the report job
every day at 6:00 a.m., declare a CronTriggerBean as follows:

<bean id="cronReportTrigger"
 class="org.springframework.scheduling.quartz.CronTriggerBean">
 <property name="jobDetail">
 <ref bean="reportJob"/>
 </property>
 <property name="cronExpression">
 <value>0 0 6 * * ?</value>
 </property>
</bean>

As with SimpleTriggerBean, the jobDetail property tells the trigger which job to
schedule. Again, we’ve wired it with a reference to the reportJob bean. The cron-
Expression property tells the trigger when to fire. If you’re not familiar with cron,
this property may seem a bit cryptic, so let’s examine this property a bit closer.

 A cron expression has at least 6 (and optionally 7) time elements, separated by
spaces. In order from left to right, the elements are defined as follows:

1 Seconds (0–59)
2 Minutes (0–59)
3 Hours (0–23)
4 Day of month (1–31)
5 Month (1–12 or JAN–DEC)
6 Day of week (1–7 or SUN–SAT)
7 Year (1970–2099)

Each of these elements can be specified with an explicit value (e.g., 6), a range
(e.g., 9–12), a list (e.g., 9,11,13), or a wildcard (e.g., *). The day of the month and

day of the week elements are mutually exclusive, so you should also indicate
which one of these fields you don’t want to set by specifying it with a question
mark (?). Table 7.1 shows some example cron expressions and what they mean.

254 CHAPTER 7
Accessing enterprise services

In the case of cronReportTrigger, we’ve set cronExpression to 0 0 6 * * ? You can
read this as “at the zero second of the zero minute of the sixth hour on any day of
the month of any month (regardless of the day of the week), fire the trigger.” In
other words, the trigger is fired at 6:00 a.m. every day.

 Using CronTriggerBean, you are able to adequately meet the course director’s
expectations. Now all that’s left is to start the job.

Starting the job
Spring’s SchedulerFactoryBean is the Quartz equivalent to TimerFactoryBean.
Declare it in the Spring configuration file as follows:

<bean class="org.springframework.scheduling.
 quartz.SchedulerFactoryBean">
 <property name="triggers">
 <list>
 <ref bean="cronReportTrigger"/>
 </list>
 </property>
</bean>

The triggers property takes an array of triggers. Since you only have a single
trigger at this time, you simply need to wire it with a list containing a single ref-
erence to the cronReportTrigger bean.

 At this point, you’ve satisfied the requirements for scheduling the enrollment
report e-mail. But in doing so, you’ve done a bit of extra work. Before we move
on, let’s take a look at a slightly easier way to schedule the report e-mail.

7.3.3 Invoking methods on a schedule
In order to schedule the report e-mail you had to write the EmailReportJob bean
(or the EmailReportTask bean in the case of timer tasks). But this bean does little
more than make a simple call to the sendCourseEnrollmentReport() method of

Table 7.1 Some sample cron expressions

Expression What it means

0 0 10,14,16 * * ? Every day at 10 a.m., 2 p.m., and 4 p.m.

0 0,15,30,45 * 1–10 * ? Every 15 minutes on the first 10 days of every month

30 0 0 1 1 ? 2012 30 seconds after midnight on January 1, 2012

0 0 8-5 ? * MON–FRI Every working hour of every business day

➥

CourseService. In this light, EmailReportTask and EmailReportJob both seem a
bit superfluous. Wouldn’t it be great if you could specify that the sendCourse-
EnrollmentReport() method be called without writing the extra class?

Scheduling tasks 255

 Good news! You can schedule single method calls without writing a separate
TimerTask or QuartzJobBean class. To accomplish this, Spring has provided Meth-
odInvokingTimerTaskFactoryBean and MethodInvokingJobDetailFactoryBean to
schedule method calls with Java’s timer support and the Quartz scheduler,
respectively.

 For example, to schedule a call to sendCourseEnrollmentReport() using Java’s
timer service, re-declare the scheduledReportTask bean as follows:

<bean id="scheduledReportTask">
 class="org.springframework.scheduling.timer.
 MethodInvokingTimerTaskFactoryBean">
 <property name="targetObject">
 <ref bean="courseService"/>
 </property>
 <property name="targetMethod">
 <value>sendCourseEnrollmentReport</value>
 </property>
</bean>

Behind the scenes, MethodInvokingTimerTaskFactoryBean creates a TimerTask
that calls the method specified by the targetMethod property on the object speci-
fied by the targetObject property. This is effectively the same as the Email-
ReportTask.

 With scheduledReportTask declared this way, you can now eliminate the
EmailReportTask class and its declaration in the reportTimerTask bean.

 MethodInvokingTimerTaskFactoryBean is good for making simple one-method
calls when you are using a ScheduledTimerTask. But you’re using Quartz’s Cron-
TriggerBean so that the report will be sent every morning at 6:00 a.m. So instead
of using MethodInvokingTimerTaskFactoryBean, you’ll want to re-declare the
reportJob bean as follows:

<bean id="courseServiceInvokingJobDetail">
 class="org.springframework.scheduling.quartz.
 MethodInvokingJobDetailFactoryBean">
 <property name="targetObject">
 <ref bean="courseService"/>
 </property>
 <property name="targetMethod">
 <value>sendCourseEnrollmentReport</value>
 </property>
</bean>

MethodInvokingJobDetailFactoryBean is the Quartz equivalent of MethodInvoking-

➥

TimerTaskFactoryBean. Under the covers, it creates a Quartz JobDetail object
that makes a single method call to the object and method specified in the

256 CHAPTER 7
Accessing enterprise services

targetObject and targetMethod properties. Using MethodInvokingJobDetail-
FactoryBean this way, you can eliminate the superfluous EmailReportJob class.

7.4 Sending messages with JMS

Most operations that take place in software are performed synchronously. In
other words, when a routine is called the program flow is handed off to that rou-
tine to perform its functionality. Upon completion, control is returned to the call-
ing routine and the program proceeds. Figure 7.1 illustrates this.

 But sometimes, it’s not necessary (or even desirable) to wait for the called rou-
tine to complete. For example, if the routine is slow, it may be preferable to send
a message to a routine and then just assume that the routine will process the mes-
sage or to check on its progress sometime later.

 When you send a message to a routine and do not wait for a result, it is said to
be asynchronous. Asynchronous program flow is illustrated in figure 7.2.

 The Java Messaging Service (JMS) is a Java API for asynchronous processing.
JMS supports two types of messaging: point-to-point and publish-subscribe.

 A point-to-point message is placed into a message queue by the message pro-
ducer and later pulled off the queue by the message consumer. Once the message
is pulled from the queue, it is no longer available to any other message consumer
that is watching the queue. This means that even though several consumers may
observe a queue, a single consumer will consume each point-to-point message.

Figure 7.1
Synchronous
program flow

Sending messages with JMS 257

The publish-subscribe model invokes images of a magazine publisher who sends
out copies of its publication to multiple subscribers. This is, in fact, a good anal-
ogy of how publish-subscribe messaging works. Multiple consumers subscribe to a
message topic. When a message producer publishes a message to the topic, all sub-
scribers will receive the message and have an opportunity to process it.

 Spring provides an abstraction for JMS that makes it simple to access a mes-
sage queue or topic (abstractly referred to as a destination) and publish messages
to the destination. Moreover, Spring frees your application from dealing with
javax.jms.JMSException by rethrowing any JMS exceptions as unchecked
org.springframework.jms.JmsExceptions.

 Let’s see how to apply Spring’s JMS abstraction.

7.4.1 Sending messages with JMS templates

In chapter 6 you learned to use Spring’s remoting support to perform credit card
authorization against the Spring Training payment service. Now you’re ready to
settle the account and receive payment.

 When authorizing payment, it was necessary to wait for a response from the
credit card processor, because you needed to know whether or not the credit
card’s issuing bank would authorize payment. But now that authorization has

Figure 7.2
Asynchronous
program flow
been granted, payment settlement can be performed asynchronously. There’s
no need to wait for a response—you can safely assume that the payment will
be settled.

258 CHAPTER 7
Accessing enterprise services

 The credit card processing system accepts an asynchronous message, sent via
JMS, for the purposes of payment settlement. The message it accepts is a
javax.jms.MapMessage containing the following fields:

■ authCode—The authorization code received from the credit card processor
■ creditCardNumber—The credit card number
■ customerName—The card holder’s name
■ expirationMonth—The month that the credit card expires
■ expirationYear—The year that the credit card expires

Spring employs a callback mechanism to coordinate JMS messaging. This call-
back is reminiscent of the JDBC callback described in chapter 4. The callback is
made up of two parts: a message creator that constructs a JMS message
(javax.jms.Message) and a JMS template that actually sends the message.

Using the template

The first thing to do is to equip the PaymentServiceImpl class with a JmsTemplate
property:

private JmsTemplate jmsTemplate;
public void setJmsTemplate(JmsTemplate jmsTemplate) {
 this.jmsTemplate = jmsTemplate;
}

The jmsTemplate property will be wired with an instance of org.springframe-
work.jms.core.JmsTemplate using setter injection. We’ll show you how to wire this
a little bit later. First, however, let’s implement the service-level method that
sends the settlement message.

 PaymentServiceImpl will need a sendSettlementMessage() method to send the
settlement message to the credit card processor. Listing 7.4 shows how send-
SettlementMessage() uses the JmsTemplate to send the message. (The PaySettlement
argument is a simple JavaBean containing the fields needed for the message.)

public void sendSettlementMessage(final PaySettlement settlement) {
 jmsTemplate.send(

Listing 7.4 Sending a payment settlement via the JMS callback

Send message
 new MessageCreator() {
 public Message createMessage(Session session)
 throws JMSException {

Define message creator

Sending messages with JMS 259

 MapMessage message = session.createMapMessage();
 message.setString("authCode",
 settlement.getAuthCode());
 message.setString("customerName",
 settlement.getCustomerName());
 message.setString("creditCardNumber",
 settlement.getCreditCardNumber());
 message.setInt("expirationMonth",
 settlement.getExpirationMonth());
 message.setInt("expirationYear",
 settlement.getExpirationYear());

 return message;
 }
 }
);
}

The sendSettlementMessage() method uses the JmsTemplate’s send() method to
send the message. This method takes an instance of org.springframework.
jms.core.MessageCreator, here defined as an anonymous inner class, which con-
structs the Message to be sent. In this case, the message is a javax.jms.Map-
Message. To construct the message, the MessageCreator retrieves values from the
PaySettlement bean’s properties and uses them to set fields on the MapMessage.

Wiring the template

Now you must wire a JmsTemplate into the PaymentServiceImpl. The following
XML from the Spring configuration file will do just that:

<bean id="paymentService"
 class="com.springinaction.training.service.PaymentServiceImpl">
…
 <property name="jmsTemplate">
 <ref bean="jmsTemplate"/>
 </property>
<bean>

The declaration of the jmsTemplate bean is as follows:

<bean id="jmsTemplate"
 class="org.springframework.jms.core.JmsTemplate">
 <property name="connectionFactory">
 <ref bean="jmsConnectionFactory"/>

Construct
message
 </property>
 <property name="defaultDestination">
 <ref bean="destination"/>

260 CHAPTER 7
Accessing enterprise services

 </property>
</bean>

Notice that the jmsTemplate bean is wired with a JMS connection factory and a
default destination. The connectionFactory property is mandatory because it is
how JmsTemplate gets a connection to a JMS provider. In the case of the Spring
Training application, the connection factory is retrieved from JNDI, as shown in
the following declaration of the connectionFactory bean:

<bean id="jmsConnectionFactory"
 class="org.springframework.jndi.JndiObjectFactoryBean">
 <property name="jndiName">
 <value>connectionFactory</value>
 </property>
</bean>

Wired this way, Spring will use JndiObjectFactoryBean (see section 7.1) to look up
the connection factory in JNDI using the name java:comp/env/connection-
Factory. (Of course, this assumes that you have a JMS implementation with an
instance of JMSConnectionFactory registered in JNDI.)

 The defaultDestination property defines the default JMS destination (an
instance of javax.jms.Destination) that the message will be published to. Here it
is wired with a reference to the destination bean. Just as with the connection-
Factory bean, the destination bean will be retrieved from JNDI using a Jndi-
ObjectFactoryBean:

<bean id="destination"
 class="org.springframework.jndi.JndiObjectFactoryBean">
 <property name="jndiName">
 <value>creditCardQueue</value>
 </property>
</bean>

The defaultDestination property is optional. But because there’s only one JMS
destination for credit card messages, it is set here for convenience. If you do not set
a default destination, then you must pass a Destination instance or the JNDI name
of a Destination when you call JmsTemplate’s send() method. For example, you’d
use this to specify the JNDI name of the JMS destination in the call to send():

jmsTemplate.send(
 "creditCardQueue", new MessageCreator() { … });

Sending messages with JMS 261

Working with JMS 1.0.2

Until now, the jmsTemplate bean has been declared to be an instance of JmsTem-
plate. Although it isn’t very apparent, this implies that the JMS provider imple-
mentation adheres to version 1.1 of the JMS specification. If your JMS provider is
1.0.2-compliant and not 1.1-compliant, then you’ll want to use JmsTemplate102
instead of JmsTemplate.

 The big difference between JmsTemplate and JmsTemplate102 is that
JmsTemplate102 needs to know whether you’re using point-to-point or publish-
subscribe messaging. By default, JmsTemplate102 assumes that you’ll be using
point-to-point messaging, but you can specify publish-subscribe by setting the
pubSubDomain property to true:

<bean id="jmsTemplate"
 class="org.springframework.jms.core.JmsTemplate">
…
 <property name="pubSubDomain">
 <value>true</value>
 </property>
</bean>

Other than that, you use JmsTemplate102 the same as you would JmsTemplate.

Handling JMS exceptions
An important thing to notice about using JmsTemplate is that you weren’t forced
to catch a javax.jms.JMSException. Many of JmsTemplate’s methods (including
send()) catch any JMSException that is thrown and converts it to an unchecked
runtime org.springframework.jms.JmsException.

7.4.2 Consuming messages

Now suppose that you are writing the code for the receiving end of the settlement
process. You’re going to need to receive the message, convert it to a PaySettlement
object, and then pass it on to be processed. Fortunately, JmsTemplate can be used
for receiving messages as well as sending messages.

 Listing 7.5 demonstrates how you might use JmsTemplate to receive a settle-
ment message.

Listing 7.5 Receiving a PaySettlement message
public PaySettlement processSettlementMessages() {
 Message msg = jmsTemplate.receive("creditCardQueue"); Receive

message

262 CHAPTER 7
Accessing enterprise services

 try {
 MapMessage mapMessage = (MapMessage) msg;
 PaySettlement paySettlement = new PaySettlement();

 paySettlement.setAuthCode(mapMessage.getString("authCode"));
 paySettlement.setCreditCardNumber(
 mapMessage.getString("creditCardNumber"));
 paySettlement.setCustomerName(
 mapMessage.getString("customerName"));
 paySettlement.setExpirationMonth(
 mapMessage.getInt("expirationMonth"));
 paySettlement.setExpirationYear(
 mapMessage.getInt("expirationYear"));

 return paySettlement;
 } catch (JMSException e) {
 throw JmsUtils.convertJmsAccessException(e);
 }
}

The receive() method of JmsTemplate attempts to receive a Message from the
specified Destination. As used earlier, receive() will try to receive a message
from the Destination that has a JNDI name of creditCardQueue.

 Once the Message is received, it is cast to a MapMessage and a PaySettlement
object is initialized with the values from the fields of the MapMessage.

 By default, receive() will wait indefinitely for the message. However, it may
not be desirable to have your application block while it waits to receive a message.
It’d be nice if you could set a timeout period so that receive() will give up after a
certain time.

 Fortunately, you can specify a timeout by setting the receiveTimeout property
on the jmsTemplate bean. For example:

<bean id="jmsTemplate"
 class="org.springframework.jms.core.JmsTemplate">
 <property name="receiveTimeout">
 <value>10000</value>
 </property>
</bean>

The receiveTimeout property takes a value that is the number of milliseconds to
wait for a message. Setting it to 10000 specifies that the receive() method should
give up after 10 seconds. If no message is received in 10 seconds, the JmsTemplate

Map message to
PaySettlement
will throw an unchecked JmsException (which you may choose to catch or ignore).

Sending messages with JMS 263

7.4.3 Converting messages

In listing 7.4, the MessageCreator instance was responsible for mapping the prop-
erties of PaySettlement to fields in a MapMessage. The processSettlement() message
in listing 7.5 performs the reverse mapping of a Message to a PaySettlement object.
That’ll work fine, but it does result in a lot of mapping code that may end up being
repeated every time you need to send or receive a PaySettlement message.

 To avoid repetition and to keep the send and receive code clean, it may be
desirable to extract the mapping code to a separate utility object.

Converting PaySettlement messages
Although you could write your own utility object to handle message conver-
sion, Spring’s org.springframework.jms.support.converter.MessageConverter

interface defines a common mechanism for converting objects to and from
JMS Messages.

 To illustrate, PaySettlementConverter (listing 7.6) implements Message-
Converter to accommodate the conversion of PaySettlement objects to and from
JMS Message objects.

public class PaySettlementConverter implements MessageConverter {
 public PaySettlementConverter() {}

 public Object fromMessage(Message message)
 throws MessageConversionException {
 MapMessage mapMessage = (MapMessage) message;
 PaySettlement settlement = new PaySettlement();

 try {
 settlement.setAuthCode(mapMessage.getString("authCode"));
 settlement.setCreditCardNumber(
 mapMessage.getString("creditCardNumber"));
 settlement.setCustomerName(
 mapMessage.getString("customerName"));
 settlement.setExpirationMonth(
 mapMessage.getInt("expirationMonth"));
 settlement.setExpirationYear(
 mapMessage.getInt("expirationYear"));
 } catch (JMSException e) {
 throw new MessageConversionException(e.getMessage());
 }

Listing 7.6 Convert a PaySettlement to and from a JMS Message

Convert Message
to PaySettlement

Rethrow
as runtime

 return settlement;
 }

exception

264 CHAPTER 7
Accessing enterprise services

 public Message toMessage(Object object, Session session)
 throws JMSException, MessageConversionException {

 PaySettlement settlement = (PaySettlement) object;
 MapMessage message = session.createMapMessage();
 message.setString("authCode", settlement.getAuthCode());
 message.setString("customerName",
 settlement.getCustomerName());
 message.setString("creditCardNumber",
 settlement.getCreditCardNumber());
 message.setInt("expirationMonth",
 settlement.getExpirationMonth());
 message.setInt("expirationYear",
 settlement.getExpirationYear());

 return message;
 }
}

As its name implies, the fromMessage() method is intended to take a Message
object and convert it to some other object. In this case, the Message is converted to
a PaySettlement object by pulling the fields out of the MapMessage and setting
properties on the PaySettlement object.

 The conversion is performed in reverse by the toMessage() method. This
method takes an Object (in this case, assumed to be a PaySettlement bean) and
sets elements in the MapMessage from the properties of the Object.

Wiring a message converter
To use the message converter, you first must declare it as a bean in the Spring
configuration file:

<bean id="settlementConverter" class="com.springinaction.
 training.service.PaySettlementConverter">
…
</bean>

Next, the JmsTemplate needs to know about the message converter. You tell it
about the PaySettlementConverter by wiring it into JmsTemplate’s message-
Converter property:

<bean id="jmsTemplate"
 class="org.springframework.jms.core.JmsTemplate">
…

Convert
PaySettlement

to Message

➥

 <property name="messageConverter">
 <ref bean="settlementConverter"/>
 </property>
</bean>

Sending messages with JMS 265

Now that JmsTemplate knows about PaySettlementConverter, you’re ready to send
messages converted from PaySettlement objects.

Sending and receiving converted messages
With a converted message wired into PayServiceImpl, the implementation of
sendSettlementMessage() becomes significantly simpler:

public void sendSettlementMessage(PaySettlement settlement) {
 jmsTemplate.convertAndSend(settlement);
}

Instead of calling JmsTemplate’s send() method and using a MessageCreator to
construct the Message object, you simply call JmsTemplate’s convertAndSend()
method passing in the PaySettlement object. Under the covers, the convertAnd-
Send() method creates its own MessageCreator instance that uses PaySettlement-
Converter to create a Message object from a PaySettlement object.

 Likewise, to receive converted messages, you call the JmsTemplate’s receiveAnd-
Convert() method (instead of the receive() method) passing the name of the
JMS message queue:

PaySettlement settlement = (PaySettlement)
 jmsTemplate.receiveAndConvert("creditCardQueue");

Other than automatically converting Message objects to application objects, the
semantics of receiveAndConvert() are the same as receive().

Using SimpleMessageConverter
Spring comes with one prepackaged implementation of the MessageCon-

verter interface. SimpleMessageConverter converts MapMessages, TextMessages,
and ByteMessages to and from java.util.Map collections, Strings, and byte
arrays, respectively.

 To use SimpleMessageConverter to convert PaySettlement objects to and from
JMS Messages, replace the settlementConverter bean declaration with the follow-
ing declaration:

<bean id="settlementConverter" class="org.springframework.jms.
 support.converter.SimpleMessageConverter">
…
</bean>

Although this converter’s function is quite simple, it may prove useful when your

➥

messages are simple and do not correspond directly to an object in your applica-
tion’s domain.

266 CHAPTER 7
Accessing enterprise services

7.5 Summary

Even though Spring provides functionality that eliminates much of the need to
work with EJBs, there are still many enterprise services that Spring doesn’t pro-
vide direct replacements for. In those cases, Spring provides abstraction layers
that make it easy to wire those services into your Spring-enabled applications.

 In this chapter, you’ve seen how to obtain references to objects that are kept in
JNDI. These references could then be wired into bean properties as though they
were locally defined beans. This proved to be useful throughout the chapter as
you used Spring’s JNDI abstraction to look up such things as mail sessions and
JMS connection factories.

 You’ve also seen how to send e-mails using Spring’s e-mail abstraction and how
to schedule tasks using either Java’s Timer or OpenSymphony’s Quartz scheduler.

 Finally, you saw how to send and receive asynchronous messages using
Spring’s JMS abstraction.

 In the next chapter, we’ll move our focus to the presentation layer of our appli-
cation, learning how to use Spring’s MVC framework to develop web applications.

Part 3

Spring in the web layer

Now that you’ve built the business layer of your application using
Spring, it’s time to put a face on it.

 In chapter 8, “Building the web layer,” you’ll learn the basics of using
Spring MVC, a web framework built within the Spring framework. You will
discover how Spring can transparently bind web parameters to your business
objects and provide validation and error handling at the same time. You will
also see how easy it is to add functionality to your web applications using
Spring’s interceptors.

 Building on the foundation of Spring MVC, chapter 9, “View layer alterna-
tives,” shows you how to move beyond JavaServer Pages and use other tem-
plating languages such as Velocity and FreeMarker. In addition, you’ll see how
to use Spring MVC to dynamically produce binary content such as PDF and
Excel documents.

 Although Spring MVC is a fantastic web framework, you may already have
an investment in another framework. In chapter 10, “Working with other web
frameworks,” you’ll see how to integrate Spring into several of the popular
web frameworks, such as Struts, Tapestry, and JavaServer Faces.

 After you have learned how to use Spring to develop a web application, it is
time to secure that application. In chapter 11, “Securing Spring applications,”
you will learn how to use the Acegi Security System to provide authentication
to your web applications. In addition, you will see how to integrate Acegi with

your business objects to apply security at the method level as well.

Building the web layer
This chapter covers
■ Mapping requests to Spring controllers
■ Transparently binding form parameters
■ Validating form submissions
■ Adding functionality with interceptors
269

270 CHAPTER 8
Building the web layer

As a J2EE developer, you have more than likely developed a web-based application.
In fact, for many Java developers web-based applications are their primary focus. If
you do have this type of experience, you are well aware of the challenges that come
with these systems. Specifically, state management, workflow, and validation are all
important features that need to be addressed. None of these are made any easier
given the HTTP protocol’s stateless nature.

 Spring’s web framework is designed to help you address these concerns. Using
Spring, you can leverage its web framework to automatically populate your model
objects from incoming request parameters while providing validation and error
handling as well. You can also rely on the framework to help manage the state of
the object that is being created by your users through web forms.

 It addition to these features, you will find that the entire framework is very
modular, with each set of components having specific roles and completely
decoupled from the rest of the framework. This allows you to develop the front
end of your web application in a very pluggable manner.

 With that in mind, let’s take a look at how Spring’s web framework is
put together.

8.1 Getting started with Spring MVC

Have you ever seen the children’s game Mousetrap? It’s a crazy game in which
the goal is to send a small steel ball over a series of wacky contraptions in order to
trigger a mousetrap. The ball goes over all kinds of intricate gadgets, from rolling
down a curvy ramp to getting sprung off a teeter-totter1 to spinning on a minia-
ture Ferris wheel to being kicked out of a bucket by a rubber boot. It goes through
of all of this to spring a trap on a poor, unsuspecting mouse.

 At first glance, you may think that Spring’s MVC framework is a lot like Mouse-
trap. Instead of moving a ball around through various ramps, teeter-totters, and
wheels, Spring moves requests around between a dispatcher servlet, handler
mappings, controllers, and view resolvers.

 But don’t draw too strong of a comparison between Spring MVC and the Rube
Goldberg-esque game of Mousetrap. Each of the components in Spring MVC per-
forms a specific purpose. Let’s start the exploration of Spring MVC by examining
the life cycle of a typical request.
1 We really felt this book needed one more teeter-totter reference (see chapter 5).

Getting started with Spring MVC 271

8.1.1 A day in the life of a request

From the time that a request is received by Spring until the time that a response is
returned to the client, many pieces of the Spring MVC framework are involved.
Figure 8.1 shows the life cycle of a request from start to finish.

 The process starts when a client (typically a web browser) sends a request b.
The first component to receive the request is Spring’s DispatcherServlet. Like
most Java-based MVC frameworks, Spring MVC funnels requests through a single
front controller servlet. A front controller is a common web-application pattern
where a single servlet delegates responsibility for a request to other components
of an application to perform the actual processing. In the case of Spring MVC,
DispatcherServlet is the front controller.

 The Spring MVC component that is responsible for handling the request is a
Controller. To figure out which controller should handle the request, Dispatch-
erServlet starts by querying one or more HandlerMappings c. A HandlerMapping
typically performs its job by mapping URL patterns to Controller objects.

 Once the DispatcherServlet has a Controller object, it dispatches the request to
the Controller to perform whatever business logic it was designed to do d. (Actu-
ally, a well-designed Controller performs little or no business logic itself and instead
delegates responsibility for the business logic to one or more service objects.)
Figure 8.1 The life cycle of a request in Spring MVC

272 CHAPTER 8
Building the web layer

Upon completion of business logic, the Controller returns a ModelAndView object
e to the DispatcherServlet. The ModelAndView can either contain a View object or
a logical name of a View object.

 If the ModelAndView object contains the logical name of a View, the Dispatcher-
Servlet queries a ViewResolver f to look up the View object that will render the
response. Finally, the DispatcherServlet dispatches the request to the View
object g indicated by the ModelAndView object. The View object is responsible for
rendering a response back to the client.

 We’ll discuss each of these steps in detail throughout this chapter. But first
things first—you’ll need to configure DispatcherServlet to use Spring MVC.

8.1.2 Configuring DispatcherServlet

At the heart of Spring MVC is DispatcherServlet, a servlet that functions as
Spring MVC’s front controller. Like any servlet, DispatcherServlet must be con-
figured in your web application’s web.xml file. Place the following <servlet> dec-
laration in your application’s web.xml file:

<servlet>
 <servlet-name>training</servlet-name>
 <servlet-class>org.springframework.web.servlet.DispatcherServlet
 </servlet-class>
 <load-on-startup>1</load-on-startup>
</servlet>

The <servlet-name> given to the servlet is significant. By default, when Dispatcher-
Servlet is loaded, it will load the Spring application context from an XML file
whose name is based on the name of the servlet. In this case, because the servlet is
named training, DispatcherServlet will try to load the application context from
a file named training-servlet.xml.

 Next you must indicate what URLs will be handled by the DispatcherServlet.
Add the following <servlet-mapping> to web.xml to let DispatcherServlet han-
dle all URLs that end in “.htm”:

<servlet-mapping>
 <servlet-name>training</servlet-name>
 <url-pattern>*.htm</url-pattern>
</servlet-mapping>

So, you’re probably wondering why we chose this particular URL pattern. It could
be because all of the content produced by our application is HTML. It could also be

because we want to fool our friends into thinking that our entire application is com-
posed of static HTML files. And it could be that we think “.do” is a silly extension.

Getting started with Spring MVC 273

 But the truth of the matter is that the URL pattern is somewhat arbitrary and
we could’ve chosen any URL pattern for DispatcherServlet. Our main reason for
choosing “*.htm” is that this pattern is the one used by convention in most Spring
MVC applications that produce HTML content.

 Now that DispatcherServlet is configured in web.xml and given a URL map-
ping, you are ready to start writing the web layer of your application. However,
there’s one more thing that we recommend you add to web.xml.

Breaking up the application context
As we mentioned earlier, DispatcherServlet will load the Spring application con-
text from a single XML file whose name is based on its <servlet-name>. But this
doesn’t mean that you can’t split your application context across multiple XML
files. In fact, we recommend that you split your application context across appli-
cation layers, as shown in figure 8.2.

 As configured, DispatcherServlet already loads training-servlet.xml. You
could put all of your application’s <bean> definitions in training-servlet.xml, but
eventually that file would become quite unwieldy. Splitting it into logical pieces
across application layers can make maintenance easier by keeping each of the
Spring configuration files focused on a single layer of the application. It also
makes it easy to swap out a layer configuration without affecting other layers (e.g.,
swapping out a training-data.xml file that uses Hibernate with one that uses
iBATIS, for example).

 Because DispatcherServlet’s configuration file is training-servlet.xml, it
makes sense for this file to contain <bean> definitions pertaining to controllers
and other Spring MVC components. As for beans in the service and data lay-
ers, we’d like those beans to be placed in training-service.xml and training-
data.xml, respectively.

 To ensure that all of these configuration files are loaded, you’ll need to config-
ure a context loader in your web.xml file. A context loader loads context

Figure 8.2

Splitting Spring
configuration files
across application layers
eases maintenance.

274 CHAPTER 8
Building the web layer

configuration files in addition to the one that DispatcherServlet loads. Depend-
ing on how you’ll be deploying your application, you have two context loaders to
choose from: ContextLoaderListener and ContextLoaderServlet.

 Most likely, you’ll be deploying to a web container that supports the
Servlet 2.3 specification (or higher) and initializes servlet listeners before serv-
lets. If that’s the case, you’ll want to configure ContextLoaderListener in your
web.xml file as follows:

<listener>
 <listener-class>org.springframework.
 web.context.ContextLoaderListener</listener-class>
</listener>

But if your application is going to be deployed to an older web container that
adheres to Servlet 2.2 or if the web container is a Servlet 2.3 container that does
not initialize listeners before servlets,2 you’ll need to configure ContextLoader-
Servlet in web.xml like this:

<servlet>
 <servlet-name>context</servlet-name>
 <servlet-class>org.springframework.
 web.context.ContextLoaderServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
</servlet>

Regardless of which context loader you end up using, you’ll need to tell it the loca-
tion of the Spring configuration file(s) to load. If not specified otherwise, the
context loader will look for a Spring configuration file at /WEB-INF/application-
Context.xml. But this location doesn’t lend itself to breaking up the application
context across application layers, so you’ll need to override this default.

 You can specify one or more Spring configuration files for the context loader
to load by setting the contextConfigLocation parameter in the servlet context:

<context-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>/WEB-INF/training-service.xml,
 /WEB-INF/training-data.xml</param-value>
</context-param>

➥

➥

➥

2 As far as we know, Oracle OC4J 9.0.3, BEA WebLogic containers up to version 8.1, and IBM Web-
Sphere 5.x are the only Servlet 2.3 containers that do not initialize listeners before servlets. For any
other container, ContextLoaderListener should work fine.

Getting started with Spring MVC 275

The contextConfigLocation parameter is specified as a comma-separated list of
paths (relative to the web application root). As configured here, the context
loader will use contextConfigLocation to load two context configuration files—
one for the service layer and one for the data layer.

 DispatcherServlet is now configured and ready to dispatch requests to the
web layer of your application. But the web layer hasn’t been built yet! No prob-
lem, though. That’s what’s up next. We’ll start by building controller objects that
perform the application logic.

8.1.3 Spring MVC in a nutshell

As a quick introduction to the nuts and bolts of Spring MVC, let’s build the home-
page for the Spring Training application. In order to maintain focus on Spring
MVC, we’ll keep the homepage as simple as possible. For now, it will do nothing
more than display a simple greeting message.

 The following list of steps defines the bare minimum that you must do to build
the homepage in Spring MVC:

1 Write the controller class that performs the logic behind the homepage.

2 Configure the controller in the DispatcherServlet’s context configura-
tion file (training-servlet.xml).

3 Configure a view resolver to tie the controller to the JSP.

4 Write the JSP that will render the homepage to the user.

Building the controller
The first step is to build a controller object that will handle the homepage
request. HomeController (listing 8.1) shows such a controller.

public class HomeController implements Controller {
 public ModelAndView handleRequest(HttpServletRequest request,
 HttpServletResponse response) throws Exception {
 return new ModelAndView("home", "message", greeting);
 }

 private String greeting;
 public void setGreeting(String greeting) {
 this.greeting = greeting;

Listing 8.1 A simple controller to display the Spring Training homepage
 }
}

276 CHAPTER 8
Building the web layer

In Spring MVC, a controller is a class that is ultimately responsible for handling a
request and performing some processing on it. In this respect a controller isn’t
much different than an HttpServlet or a Struts Action. In fact, you may find the
signature of the handleRequest() somewhat familiar as it is very similar to the sig-
nature of a servlet’s service() method.

 Where a Spring MVC controller differs from a servlet or a Struts Action is that
it is configured as just another JavaBean in the Spring application context. This
means you can take full advantage of dependency injection and Spring AOP with
a controller class just as you would any other bean. In the case of HomeController,
dependency injection is used to configure the greeting that will be displayed on
the homepage. In a more complex controller, you might wire service layer beans
into the controller so that the controller can delegate responsibility for business
logic to a service-layer bean.

 The last thing that handleRequest() does (in fact, the only thing that it does in
the case of HomeController) is to return a ModelAndView object. A ModelAndView
object is an object that holds both view information and model data that will be
used when rendering the output. All of Spring’s controllers return a ModelAndView
object from their execution methods. In this case, the ModelAndView returned tells
DispatcherServlet to take the user to the view whose name is home and to place
the greeting object into the “message” field of the model data.

Configuring the controller bean
Now that the HomeController has been written, you must configure it in the
DispatcherServlet’s context configuration file (which is training-servlet.xml
for the Spring Training application). The following chunk of XML declares the
HomeController:

<bean name="/home.htm"
 class="com.springinaction.training.mvc.HomeController">
 <property name="greeting">
 <value>Welcome to Spring Training!</value>
 </property>
</bean>

As mentioned before, the greeting property should be wired with a message that
is to be displayed on the homepage. Here we’ve kept the greeting simple with
“Welcome to Spring Training!”

 One thing that may have struck you as odd is that instead of specifying a bean

id for the HomeController bean, we’ve specified a name. And to make things even
weirder, instead of giving it a real name, we’ve given it a URL pattern of “/
home.htm”. Here the name attribute is serving double duty as both the name of

Getting started with Spring MVC 277

the bean and a URL pattern for requests that should be handled by this controller.
Because the URL pattern has special characters that are not valid in an XML id
attribute—specifically, the slash (/) character—the name attribute had to be used
instead of id.

 When a request comes to DispatcherServlet with a URL that ends with “/home.
htm”, DispatcherServlet will dispatch the request to HomeController for han-
dling. Note, however, that the only reason that the bean’s name attribute is used
as the URL pattern is because we haven’t configured a handler mapping bean.
The default handler mapping used by DispatcherServlet is BeanNameUrlHandler-
Mapping, which uses the base name as the URL pattern. Later (in section 8.2)
you’ll see how to use some of Spring’s other handler mappings that let you decou-
ple a controller’s bean name from its URL pattern.

Declaring a view resolver

One other bean you’ll need to declare in training-servlet.xml is a view resolver
bean. A view resolver’s job is to take the view name returned in the ModelAndView
and map it to a view. In the case of HomeController, we need a view resolver to
resolve “home” to a JSP file that renders the home page.

 As you’ll see in section 8.4, Spring MVC comes with several view resolvers to
choose from. But for views that are rendered by JSP, there’s none simpler than
InternalResourceViewResolver:

<bean id="viewResolver" class="org.springframework.web.
 servlet.view.InternalResourceViewResolver">
 <property name="prefix">
 <value>/WEB-INF/jsp/</value>
 </property>
 <property name="suffix">
 <value>.jsp</value>
 </property>
</bean>

InternalResourceViewResolver prefixes the view name returned in the Model-
AndView with the value of its prefix property and suffixed it with the value from
its suffix property. Since HomeController returns a view name of home in the
ModelAndView, InternalResourceViewResolver will find the view at /WEB-INF/jsp/
home.jsp.

➥

Creating the JSP

The only thing left to do is create the JSP that renders the output. The simple JSP
that follows is sufficient for now:

278 CHAPTER 8
Building the web layer

<html>
 <head><title>Spring Training, Inc.</title></head>
 <body>
 <h2>${message}</h2>
 </body>
</html>

Be sure to name this JSP “home.jsp” and to place it in the /WEB-INF/jsp folder
within your web application. That’s where InternalResourceViewResolver will try
to find it.

Putting it all together
The homepage is now complete. You’ve written a controller to handle requests
for the homepage, configured it to rely on BeanNameUrlHandlerMapping to have a
URL pattern of “/home.htm”, written a simple JSP that represents the homepage,
and configured a view resolver to find the JSP. Now, how does this all fit together?

Figure 8.3 shows the steps that a request for “/home.htm” will go through given
the work done so far.

 To recap this process:

1 DispatcherServlet receives a request whose URL pattern is “/home.htm”.

Figure 8.3
Processing a request for “/home.htm”
2 DispatcherServlet consults BeanNameUrlHandlerMapping to find a control-
ler whose bean name is “/home.htm”, finding the HomeController bean.

Mapping requests to controllers 279

3 DispatcherServlet dispatches the request to HomeController for processing.

4 HomeController returns a ModelAndView object with a logical view name
of home.

5 DispatcherServlet consults its view resolver (configured as InternalRe-
sourceViewResolver) to find a view whose logical name is home. Internal-
ResourceViewResolver returns the path to /WEB-INF/jsp/home.jsp.

6 DispatcherServlet forwards the request to the JSP at /WEB-INF/jsp/
home.jsp to render the home page to the user.

Now that you’ve seen the big picture of Spring MVC, let’s take a closer look at
each of the moving parts involved in servicing a request. We’ll start where it all
begins—with handler mappings.

8.2 Mapping requests to controllers

When associating a request with a specific controller, DispatcherServlet con-
sults a handler mapping bean. Handler mappings typically map a specific
controller bean to a URL pattern.3 This is similar to how URLs are mapped to
servlets using a <servlet-mapping> in a web application’s web.xml or how
Actions in Jakarta Struts are mapped to URLs using the path attribute of
<action> in struts-config.xml.

 In the previous section, we relied on the fact that DispatcherServlet defaults
to use BeanNameUrlHandlerMapping. BeanNameUrlHandlerMapping was fine to get
started, but it may not be suitable in all cases. Fortunately, Spring MVC offers sev-
eral handler mapping implementations to choose from.

 All of Spring MVC’s handler mappings implement the org.springframe-
work.web.servlet.HandlerMapping interface. Spring comes prepackaged with
three useful implementations of HandlerMapping:

■ BeanNameUrlHandlerMapping—Maps controllers to URLs that are based on
the controllers’ bean name

■ SimpleUrlHandlerMapping—Maps controllers to URLs using a property col-
lection defined in the context configuration file

3 Even though the prepackaged implementations of HandlerMapping map requests to controllers using

URL patterns, the HandlerMapping interface is actually much more flexible than that. If you are so
inclined, it is possible to write a custom implementation of HandlerMapping that chooses its mapping
based on cookie values, session state, or other values contained within an HttpServletRequest object.

280 CHAPTER 8
Building the web layer

■ CommonsPathMapHandlerMapping—Maps controllers to URLs using source-
level metadata placed in the controller code

Let’s look at how to use each of these handler mappings, starting with Bean-
NameUrlHandlerMapping.

8.2.1 Mapping URLs to bean names

A simple approach for mapping a controller to a URL is to base the URL pat-
tern on the controller’s bean name. BeanNameUrlHandlerMapping performs this
type of mapping.

 For example, suppose that you want the ListCoursesController bean to han-
dle requests to URLs of the form “http://server-name/training/listCourses.htm”. To
set up bean name mapping, you must declare a BeanNameUrlHandlerMapping bean
in your context configuration file like this:

<bean id="beanNameUrlMapping" class="org.springframework.web.
 servlet.handler.BeanNameUrlHandlerMapping"/>

Then you’ll need to name your controller beans with the URL pattern that they are
to handle. The URL pattern for the ListCoursesController is “listCourses.htm”,
so you’ll need to declare the controller in the context configuration file as follows:

<bean name="/listCourses.htm"
 class="com.springinaction.training.mvc.ListCoursesController">
 <property name="courseService">
 <ref bean="courseService"/>
 </property>
</bean>

Whenever BeanNameUrlHandlerMapping is asked to resolve a mapping to “/list-
CoursesController.htm”, it will scour the application context for a bean whose
name matches the URL pattern, finding ListCoursesController.

 BeanNameUrlHandlerMapping is the default handler mapping used by
DispatcherServlet. You shouldn’t have to declare it explicitly in your context
configuration file, but you may choose to anyway so that it is clear which handler
mapping is being used. You may also have to declare it explicitly if you are using
multiple handler mappings and need to specify ordering (see section 8.3.4).

 Although BeanNameUrlHandlerMapping is quite simple, it creates a coupling
between presentation-layer URLs and your controller names. In doing so, it also

➥

makes your controller names look odd. As such, we don’t recommend using Bean-
NameUrlHandlerMapping except in extremely simple applications with only a

Mapping requests to controllers 281

handful of controllers. In most cases, you are encouraged to consider one of the
other handler mappings, such as SimpleUrlHandlerMapping.

8.2.2 Using SimpleUrlHandlerMapping

SimpleUrlHandlerMapping is probably one of the most straightforward of Spring’s
handler mappings. It lets you map URL patterns directly to controllers without
having to name your beans in a special way.

 For example, consider the following declaration of SimpleUrlHandlerMapping
that associates several of the Spring Training application’s controllers with their
URL patterns:

<bean id="simpleUrlMapping" class=
 "org.springframework.web.servlet.handler.SimpleUrlHandlerMapping">
 <property name="mappings">
 <props>
 <prop key="/listCourses.htm">listCoursesController</prop>
 <prop key="/register.htm">registerStudentController</prop>
 <prop key="/displayCourse.htm">displayCourseController</prop>
 <prop key="/login.htm">loginController</prop>
 <prop key="/enroll.htm">enrollController</prop>
 </props>
 </property>
</bean>

SimpleUrlHandlerMapping’s mappings property is wired with a java.util.Proper-
ties using <props>. The key attribute of each <prop> element is a URL pattern.
Just as with BeanNameUrlHandlerMapping, all URL patterns are relative to Dis-
patcherServlet’s <servlet-mapping>. URL. The value of each <prop> is the bean
name of a controller that will handle requests to the URL pattern.

8.2.3 Using metadata to map controllers

The final handler mapping we’ll look at is CommonsPathMapHandlerMapping. This
handler mapping considers source-level metadata placed in a controller’s source
code to determine the URL mapping. In particular the metadata is expected to be an
org.springframework.web.servlet.handler.commonsattributes.PathMap attribute
compiled into the controller using the Jakarta Commons Attributes compiler.

 To use CommonsPathMapHandlerMapping, simply declare it as a <bean> in your
context configuration file as follows:
<bean id="urlMapping" class="org.springframework.web.
 servlet.handler.metadata.CommonsPathMapHandlerMapping"/>➥

282 CHAPTER 8
Building the web layer

Then tag each of your controllers with a PathMap attribute to declare the URL pat-
tern for the controller. For example, to map DisplayCourseController to “/dis-
playCourse.htm”, tag DisplayCourseController as follows:

/**
 * @@org.springframework.web.servlet.handler.
 commonsattributes.PathMap("/displayCourse.htm")
 */
public class DisplayCourseController
 extends AbstractCommandController {
…
}

Finally, you’ll need to set up your build to include the Commons Attributes com-
piler so that the attributes will be compiled into your application code. See chap-
ter 5, section 5.5.2 for details on how to add the attributes compiler to your build.

8.2.4 Working with multiple handler mappings

As you’ve seen, Spring comes with several useful handler mappings. But what if
you can’t (or don’t want to) settle on a single handler mapping? For instance, sup-
pose that your application has been simple and you’ve been using BeanNameUrl-
HandlerMapping. But it is starting to grow and you’d like to start using
SimpleUrlHandlerMapping going forward. How can you mix-’n’-match handler
mappings during the transition?

 As it turns out, all of the handler mapping classes implement Spring’s Ordered
interface. This means that you can declare multiple handler mappings in your
application, and set their order property to indicate which has precedence with
relation to the others.

 For example, suppose that you want to use both BeanNameUrlHandlerMapping
and SimpleUrlHandlerMapping alongside each other in the same application.
You’d need to declare the handler mapping beans as follows:

<bean id="beanNameUrlMapping" class="org.springframework.web.
 servlet.handler.BeanNameUrlHandlerMapping">
 <property name="order"><value>1</value></property>
</bean>
<bean id="simpleUrlMapping" class="org.springframework.web.
 servlet.handler.SimpleUrlHandlerMapping">
 <property name="order"><value>0</value></property>
 <property name="mappings">

➥

➥

➥

…
 </property>
</bean>

Handling requests with controllers 283

Note that the lower the value of the order property, the higher the priority. In this
case, SimpleUrlHandlerMapping’s order is lower than that of BeanNameUrlHandler-
Mapping. This means that DispatcherServlet will consult SimpleUrlHandlerMapping
first when trying to map a URL to a controller. BeanNameUrlHandlerMapping will
only be consulted if SimpleUrlHandlerMapping turns up no results.

 Handler mappings map requests to controllers based on the requests’ URL
patterns. But that’s only the beginning of the story. Now let’s see how to write
controllers—the next step in the life of a request.

8.3 Handling requests with controllers

If DispatcherServlet is the heart of Spring MVC, then controllers are the brains.
When implementing the behavior of your Spring MVC application, you extend
one of Spring’s controller classes. The controller receives requests from Dispatcher-
Servlet and performs some business functionality on behalf of the user.

 If you’re familiar with other web frameworks such as Struts or WebWork, you
may recognize controllers as being roughly equivalent in purpose to a Struts or
WebWork action. One huge difference between Spring controllers and Struts/
WebWork actions, however, is that Spring provides a rich controller hierarchy
(as shown in figure 8.4) in contrast to the rather flat action hierarchy of Struts
or WebWork.

 At first glance, figure 8.4 may seem somewhat daunting. Indeed, when com-
pared to other MVC frameworks such as Jakarta Struts or WebWork, there’s a lot
more to swallow with Spring’s controller hierarchy. But in reality, this perceived
complexity is actually quite simple and flexible.

 At the top of the controller hierarchy is the Controller interface. Any class
implementing this interface can be used to handle requests through the Spring
MVC framework. To create your own controller all you must do is write a class that
implements this interface.

 While you could write a class that directly implements the Controller inter-
face, you’re more likely to extend one of the classes lower in the hierarchy.
Whereas the Controller interface defines the basic contract between a controller
and Spring MVC, the various controller classes provide additional functionality
beyond the basics.

 The wide selection of controller classes is both a blessing and a curse.

Unlike other frameworks that force you to work with a single type of controller
object (such as Struts’ Action class), Spring lets you choose the controller that is
most appropriate for your needs. However, with so many controller classes to

http://www.springframework.org/docs/api/org/springframework/web/servlet/tags/BindStatus.html

284 CHAPTER 8
Building the web layer

choose from, many developers find themselves overwhelmed and don’t know
how to decide.

 To help you in deciding which controller class to extend for your applica-
tion’s controllers, consider table 8.1. As you can see, Spring’s controller classes
can be grouped into six categories that provide more functionality (and intro-
duce more complexity) as you progress down the table. You may also notice from
figure 8.4 that (with the exception of ThrowawayController) as you move down

Figure 8.4 Spring comes with several controllers to choose from.
the controller hierarchy, each controller builds on the functionality of the con-
trollers above it.

Handling requests with controllers 285

In the sections that follow, we’re going to build several controllers that define the
web layer of the Spring Training application by extending several of the Control-
ler classes in figure 8.4. Let’s start by writing a simple controller based on the
AbstractController class.

8.3.1 Writing a simple controller

Many times you’ll need to implement a simple controller class that takes no (or
few) parameters and just performs some logic and provides model data to be
displayed by the view. Consider a controller from the Spring Training applica-
tion, for example, that lists all available courses being offered. Because this con-
troller will always list all available courses, there’s no need for it to take any
input. It will simply retrieve a list of courses and make the course available for
the view to display.

 When controller requirements are this straightforward, you may consider
implementing your controller as a subclass of org.springframework.web.serv-
let.mvc.AbstractController. Listing 8.2 shows ListCoursesController, a con-

Table 8.1 Spring MVC’s selection of controller classes

Controller type Classes Useful when…

Simple Controller (interface)
AbstractController

Your controller is extremely simple, requiring little
more functionality than is afforded by basic Java
servlets.

Throwaway ThrowawayController You want a simple way to handle requests as
commands (in a manner similar to WebWork
Actions).

Multi-Action MultiActionController Your application has several actions that perform
similar or related logic.

Command BaseCommandController
AbstractCommandController

Your controller will accept one or more parameters
from the request and bind them to an object. Also
capable of performing parameter validation.

Form AbstractFormController
SimpleFormController

You need to display an entry form to the user and
also process the data entered into the form.

Wizard AbstractWizardFormController You want to walk your user through a complex,
multipage entry form that ultimately gets processed
as a single form.
troller that is used to display the course listing.

286 CHAPTER 8
Building the web layer

public class ListCoursesController extends AbstractController {
 public ModelAndView handleRequestInternal(
 HttpServletRequest request, HttpServletResponse response)
 throws Exception {

 Set courses = courseService.getAllCourses();

 return new ModelAndView("courseList", "courses", courses);
 }

 private CourseService courseService;
 public void setCourseService(CourseService courseService) {
 this.courseService = courseService;
 }
}

The handleRequestInternal() method is the main method of execution in an
AbstractController. Override this method to implement the functionality of the
controller. As you can see, it takes only an HttpServletRequest and HttpServlet-
Response as parameters, but you usually won’t need to use them. In the case of
ListCoursesController, the courses are retrieved using a CourseService (received
via setter injection). The course list is then returned to the view wrapped nicely in
a ModelAndView object.

Introducing ModelAndView
The ModelAndView class represents an important concept in Spring MVC. In fact,
every controller execution method must return a ModelAndView. So, let’s take a
moment to understand how this important class works.

 A ModelAndView object, as its name implies, fully encapsulates the view and
model data that is to be displayed by the view. In the case of ListCoursesController,
the ModelAndView object is constructed as follows:

new ModelAndView("courseList", "courses", courses);

The first parameter of this ModelAndView constructor is the logical name of a view
component that will be used to display the output from this controller. Here the
logical name of the view is courseList. A view resolver will use this name to look
up the actual View object (you’ll learn more about Views and view resolvers later in

Listing 8.2 ListCoursesController is an extremely simple controller.

Handle
request

Retrieve list
of courses

Return course
list to view

Inject the
CourseService
section 8.4).
 The next two parameters represent the model object that will be passed to

the view. These two parameters act as a name-value pair. The second parameter

Handling requests with controllers 287

is the name of the model object given as the third parameter. In this case, the
list of courses in the courses variable will be passed to the view with a name
of courses.

Wiring the controller

Now that you’ve written ListCoursesController, you’ll need to configure it in the
context configuration file. Remember that since this is a Spring MVC component,
you must place it in the training-servlet.xml file. ListCoursesController is con-
figured using the following <bean> definition:

<bean id="ListCoursesController"
 class="com.springinaction.training.mvc.ListCoursesController">
 <property name="courseService">
 <ref bean="courseService"/>
 </property>
</bean>

Notice that the courseService property is injected with a reference to the course-
Service object (which is declared in the training-service.xml file).

 Basing your controller on AbstractController is fine when you don’t need a
lot of power. But most controllers are going to be more interesting, taking
parameters and requiring validation of those parameters. For those circum-
stances, let’s take a step down the controller hierarchy and look at how to work
with command controllers.

8.3.2 Processing commands

It’s not unusual for a web request to take one or more parameters that help deter-
mine the results. For instance, after viewing a list of available courses, you may
want to view more details about that course. The controller that displays course
information will need to take the ID of the course as a parameter.

 Of course, you could extend AbstractController and retrieve the parameters
your controller needs from the HttpServletRequest. But you would also have to
write the logic that binds the parameters to business objects and you’d have to put
validation logic in the controller itself. Binding and validation logic really don’t
belong in the controller.

 In the event that your controller will need to perform work based on parame-
ters, your controller class should extend a command controller class such as

org.springframework.web.servlet.mvc.AbstractCommandController. This con-
troller will automatically bind parameters to a command object and provide
hooks for you to plug in validators to ensure that the parameters are valid.

288 CHAPTER 8
Building the web layer

 Listing 8.3 shows DisplayCourseController, a command controller that is
used to display a detail page for a specific course.

public class DisplayCourseController
 extends AbstractCommandController {

 public DisplayCourseController() {
 setCommandClass(DisplayCourseCommand.class);
 }

 protected ModelAndView handle(HttpServletRequest request,
 HttpServletResponse response, Object command,
 BindException errors) throws Exception {

 DisplayCourseCommand displayCommand =
 (DisplayCourseCommand) command;

 Course course = courseService.getCourse(displayCommand.getId());

 return new ModelAndView("courseDetail", "course", course);
 }

 private CourseService courseService;
 public void setCourseService(CourseService courseService) {
 this.courseService = courseService;
 }
}

As with ListCoursesController, you’ll also need to register DisplayCourse-
Controller in training-servlet.xml:

<bean id="displayCourseController"
 class="com.springinaction.training.mvc.DisplayCourseController">
 <property name="courseService">
 <ref bean="courseService"/>
 </property>
</bean>

The handle() method of DisplayCourseController is the main execution method
for AbstractCommandController. This method is a bit more interesting than the
handleRequestInternal() method from AbstractController. In addition to an
HttpServletRequest and an HttpServletResponse, handle() takes an Object that

Listing 8.3 A controller to display details of a single course

Set command
class

Handle
request

Retrieve course
is the controller’s command.
 A command object is a bean that is meant to hold request parameters for easy

access. If you are familiar with Jakarta Struts, you may recognize a command

Handling requests with controllers 289

object as being similar to a Struts ActionForm. The key difference is that unlike a
Struts form bean that must extend ActionForm, a Spring command object is a POJO
that doesn’t need to extend any Spring-specific classes.

 In this case, the command object is an instance of DisplayCourseCommand, as
set in the controller’s constructor. DisplayCourseCommand is a simple JavaBean
with a single property, as follows:

public class DisplayCourseCommand {
 public DisplayCourseCommand() {}

 private Integer id;
 public void setId(Integer id) {
 this.id = id;
 }

 public Integer getId() {
 return id;
 }
}

Before the handle() method is called, Spring will attempt to match any parame-
ters passed in the request to properties in the command object. Since Display-
CourseCommand only has an id property, this means that if the request has an
parameter whose name is id, then its value will be set to the command object’s id
property. DisplayCourseController’s handle() method uses the id property of
the DisplayCourseCommand when looking up the course detail.

 Command controllers make it easy to handle requests with request parameters
by binding the request parameters to command objects. The request parame-
ters could be given as either URL parameters (as is likely the case with Display-
CourseController) or as fields from a web-based form.

8.3.3 Processing form submissions

In a typical web-based application, you’re likely to encounter at least one form
that you must fill out. When you submit that form, the data that you enter is sent
to the server for processing and, once the processing is completed, you are either
presented with a success page or are given the form page with errors in your sub-
mission that you must correct.

 For instance, consider what might happen in the Spring Training application
when a new student registers. To begin, students will be given a form to complete

where they must enter data about themselves such as their name, address, phone
number, etc. When students submit the form, the data that they entered is sent to
the server to perform the task of registering them in the Spring Training database.

290 CHAPTER 8
Building the web layer

 If everything goes well, they’ll receive a page indicating that they are now
registered and may begin enrolling in courses. But if a student enters any bad
data (perhaps the phone number is in an invalid format), then the form will be
redisplayed and the student will have to correct the mistake before resubmitting
the form.

 When implementing the registration process, you might choose to extend
AbstractController to display the form and to extend AbstractCommandController
to process the form. This could certainly work, but would end up being more dif-
ficult than necessary. You would have to maintain two different controllers that
work in tandem to process student registration. Wouldn’t it be simpler to have a
single controller handle both form display and form processing?

 What you’ll need in this case is a form controller. Form controllers take the
concept of command controllers a step further by adding functionality to display
a form when an HTTP GET request is received and process the form when an
HTTP POST is received. Furthermore, if any errors occur in processing the form,
the controller will know to redisplay the form so that the user can correct the
errors and resubmit.

 To illustrate how form controllers work, consider RegisterStudentController
in listing 8.4.

public class RegisterStudentController
 extends SimpleFormController {
 public RegisterStudentController() {
 setCommandClass(Student.class);
 }

 protected void doSubmitAction(Object command)
 throws Exception {

 Student student = (Student) command;
 studentService.enrollStudent(student);
 }

 private StudentService studentService;
 public void setStudentService(StudentService studentService) {
 this.studentService = studentService;
 }
}

Listing 8.4 Registering students through SimpleFormController

Set command class

Process
request
Although it’s not very obvious, RegisterStudentController is responsible for both
displaying a student registration form and processing the results of that form. The

Handling requests with controllers 291

doSubmitAction() method handles the form submission (an HTTP POST request)
by passing the command object (which happens to be a Student domain object) to
the enrollStudent() method of the injected StudentService reference.

 What’s not clear from listing 8.4 is how this controller knows to display the
registration form. It’s also not clear where the user will be taken if the registration
is successful. In fact, the doSubmitAction() method doesn’t even return a Model-
AndView object.

 SimpleFormController is designed to keep view details out of the controller’s
Java code as much as possible. Instead of hard-coding a ModelAndView object, you
configure your controller in the context configuration file as follows:

<bean id="registerStudentController" class="com.springinaction.
 training.mvc.RegisterStudentController">
 <property name="studentService">
 <ref bean="studentService"/>
 </property>
 <property name="formView">
 <value>newStudentForm</value>
 </property>
 <property name="successView">
 <value>studentWelcome</value>
 </property>
</bean>

Just as with the other controllers, the registerStudentController bean is wired
with any services that it may need (e.g., studentService). But here you also spec-
ify a formView property and a successView property. The formView property is the
logical name of a view to display when the controller receives an HTTP GET
request or when any errors are encountered. Likewise, the successView is the log-
ical name of a view to display when the form has been submitted successfully. A
view resolver (see section 8.4) will use these values to locate the View object that
will render the output to the user.

 You may have noticed one small limitation with using the doSubmitAction()
method. As it spares you from returning a ModelAndView object, it also makes it
impossible to send any model data to the view. This may or may not be a problem
for you, depending on whether you need to display model data on the success view.

 If you need to send data to be displayed by the view, you should override the
onSubmit() method instead of doSubmitAction(). For example, suppose that
after enrolling the new student you want to send the user to a page where the

➥

student’s information is displayed. You’ll need to send the Student object to
the view. To do this, replace the doSubmitAction() from listing 8.4 with the fol-
lowing onSubmit() method:

292 CHAPTER 8
Building the web layer

protected ModelAndView onSubmit(Object command,
 BindException errors) throws Exception {

 Student student = (Student) command;
 studentService.enrollStudent(student);

 return new ModelAndView(getSuccessView(),"student", student);
}

The onSubmit() method is slightly more complex then doSubmitAction(), but is the
only way to go if you need to send model data to the view in a form controller. Like
the handler methods from the other controllers, onSubmit() returns a ModelAndView
object. But so that you can still configure its success view in the context configura-
tion file, you should call getSuccessView() when setting the view’s logical name.

 Because of its simplicity, you should favor the doSubmitAction() method over
the onSubmit() method unless you need to build your own ModelAndView object to
pass model data to the view.

Validating form input
When RegisterStudentController calls enrollStudent(), it’s important to ensure
that all of the data in the Student command is valid and complete. You don’t want
to let students only enter partial information when they register. Nor do you
want them to register with an invalid e-mail address or phone number.

 The org.springframework.validation.Validator interface accommodates
validation for Spring MVC. It is defined as follows:

public interface Validator {
 void validate(Object obj, Errors errors);
 boolean supports(Class clazz);
}

Implementations of this interface should examine the fields of the object passed
into the validate() method and reject any invalid values via the Errors object.
The supports() method is used to help Spring determine whether or not the val-
idator can be used for a given class.

 StudentValidator (listing 8.5) is a Validator implementation used to validate
a Student object.

public class StudentValidator implements Validator {
 public boolean supports(Class clazz) {
 return clazz.equals(Student.class);

Listing 8.5 Validating a Student
 }

 public void validate(Object command, Errors errors) {
 Student student = (Student) command;

Handling requests with controllers 293

 ValidationUtils.rejectIfEmpty(
 errors, "login", "required.login", "Login is required");
 ValidationUtils.rejectIfEmpty(
 errors, "password", "required.password",
 "Password is required");
 ValidationUtils.rejectIfEmpty(
 errors, "firstName", "required.firstName",
 "First name is required");
 ValidationUtils.rejectIfEmpty(
 errors, "lastName", "required.lastName",
 "Last name is required");
 ValidationUtils.rejectIfEmpty(
 errors, "address1", "required.address",
 "Address is required");
 ValidationUtils.rejectIfEmpty(
 errors, "city", "required.city", "City is required.");
 ValidationUtils.rejectIfEmpty(
 errors, "state", "required.state", "State is required");
 ValidationUtils.rejectIfEmpty(
 errors, "zip", "required.zip", "Zip is required");
 }

 private static final String PHONE_REGEXP =
 "/(\\({0,1})(\\d{3})(\\){0,1})(\\s|-)*(\\d{3})(\\s|-)*(\\d{4})/";

 private void validatePhone(String phone, Errors errors) {
 ValidationUtils.rejectIfEmpty(
 errors, "phone", "required.phone", "Phone is required");

 Perl5Util perl5Util = new Perl5Util();
 if(!perl5Util.match(PHONE_REGEXP, phone)) {
 errors.reject("invalid.phone", "Phone number is invalid");
 }
 }

 private static final String EMAIL_REGEXP =
 "/^[a-z0-9]+([_\\.-][a-z0-9]+)*@([a-z0-9]+([\\.-][a-z0-9]+)*)
 +\\.[a-z]{2,}$/i";

 private void validateEmail(String email, Errors errors) {
 ValidationUtils.rejectIfEmpty(
 errors, "email", "required.email", "E-mail is required");

 Perl5Util perl5Util = new Perl5Util();
 if(!perl5Util.match(EMAIL_REGEXP, email)) {
 errors.reject("invalid.email", "E-mail is invalid");
 }

Validate
required fields

Validate
required
fields

Verify phone format

➥

Verify e-mail
format
 }
}

294 CHAPTER 8
Building the web layer

The only other thing to do is to use the StudentValidator with RegisterStudent-
Controller. You can do this by wiring a StudentValidator bean into the Register-
StudentController bean:

<bean id="registerStudentController" class=
 "com.springinaction.training.mvc.RegisterStudentController">
…
 <property name="validator">
 <bean class="com.springinaction.training.mvc.StudentValidator"/>
 </property>
</bean>

When a student registers, if all of the required properties are set and the e-mail
and phone number are valid, then RegisterStudentController’s doSubmit-
Action() will be called and the student will be registered. However, if Student-
Validator rejects any of the fields, then the user will be returned to the form view
to correct the errors.

 A basic assumption with SimpleFormController is that a form is a single page.
That may be fine when doing something simple such as registering a student, but
what if your forms are complex, requiring the user to answer dozens of questions?
In that case, it may make sense to break the form into several subsections and
walk them through using a wizard. Let’s see how Spring MVC can help you con-
struct wizard forms.

8.3.4 Processing complex forms with wizards

Imagine that Spring Training wants to conduct a quality survey among its stu-
dents after they have completed a course. Among the types of questions asked
are ones concerning the quality of the course materials, the effectiveness of the
instructor, and the quality of the facilities in which the training was held. This
feedback will be used to improve on future course offerings. Your job is to
implement this survey as a form to be completed online when students com-
plete the course.

 One approach you could take is to throw all of the questions into a single JSP
and extend SimpleFormController to process and save the data. However, there
may be upwards of 40 questions asked on the survey and placing all of those ques-
tions on a single page would require users to scroll in their browser to complete it
all. If it’s hard to use, students will not be as inclined to complete the survey.
 Instead of creating one huge survey form, let’s break the survey into several
subsections and walk the student through the form using a wizard. Suppose that
you were to partition the survey questions into four categories:

Handling requests with controllers 295

■ General questions, including the title of the course and (optionally) con-
tact information for the student

■ Questions regarding the instructor’s effectiveness, including an assessment
of the instructor’s knowledge of the subject matter and willingness to
answer questions

■ Questions pertaining to the course content and material
■ Questions related to the quality and cleanliness of the facilities where the

training took place

Breaking it up this way, you are able to step the student through four pages, well
defined in purpose, that together complete the entire survey form.

 Fortunately, Spring MVC provides org.springframework.web.servlet.mvc.
AbstractWizardFormController to help out. AbstractWizardFormController is the
most powerful of Spring’s controllers. It is a special type of form controller that
makes simple work of processing forms that span multiple pages.

Building a basic wizard controller

To construct a wizard controller, you must extend the AbstractWizardForm-
Controller class. FeedbackWizardController (listing 8.6) shows a minimal wizard
controller for a feedback survey.

public class FeedbackWizardController
 extends AbstractWizardFormController {

 public FeedbackWizardController() {
 setCommandClass(FeedbackSurvey.class);
 }

 protected ModelAndView processFinish(HttpServletRequest request,
 HttpServletResponse response, Object command,
 BindException errors) throws Exception {

 FeedbackSurvey feedback = (FeedbackSurvey) command;

 feedbackService.submitFeedback(feedback);

 return new ModelAndView("thankyou");
 }

Listing 8.6 Receiving student feedback using a wizard controller

Set command class

Finalize form

Submit feedback data

Go to Thank You page
 private FeedbackService feedbackService;
 public void setFeedbackService(FeedbackService feedbackService) {

296 CHAPTER 8
Building the web layer

 this.feedbackService = feedbackService;
 }
}

Just as with any command controller, you must set the command class when using
a wizard controller. Here FeedbackWizardController has been set to use Feed-
backSurvey as the command class. FeedbackSurvey is just a simple JavaBean that
holds survey data.

 The only compulsory method of AbstractWizardFormController is process-
Finish(). This method is called to finalize the form when the user has finished
completing it (presumably by clicking a Finish button). In FeedbackWizard-
Controller, processFinish() sends the data in the FeedbackSurvey object to submit-
Feedback() on the injected FeedbackService object.

 Notice, however, that there’s nothing in FeedbackWizardController that tells
you anything about what pages make up the form or in what order the pages
appear. That’s because AbstractWizardFormController handles most of the work
involved to manage the workflow of the wizard under the covers. But how does
AbstractWizardFormController know what pages make up the form?

 Some of this may become more apparent when you see how FeedbackWizard-
Controller is declared in training-servlet.xml:

<bean id="feedbackController" class="com.springinaction.
 training.mvc.FeedbackWizardController">
 <property name="feedbackService">
 <ref bean="feedbackService"/>
 </property>
 <property name="pages">
 <list>
 <value>general</value>
 <value>instructor</value>
 <value>course</value>
 <value>facilities</value>
 </list>
 </property>
</bean>

So that the wizard knows which pages make up the form, a list of logical view
names is given to the pages property. These names will ultimately be resolved into
a View object by a view resolver (see section 8.4). But for now, just assume that
these names will be resolved into the base filename of a JSP (e.g., general resolves

➥

into general.jsp).
 While this clears up how FeedbackWizardController knows which pages to

show, it doesn’t tell us how it knows what order to show them in.

Handling requests with controllers 297

Stepping through form pages
The first page to be shown in any wizard controller will be the first page in the list
given to the pages property (although this can be overridden by overriding the
method). In the case of the feedback wizard, the first page shown will be the
general page.

 To determine which page to go to next, AbstractWizardFormController con-
sults its getTargetPage() method. This method returns an int, which is an index
into the zero-based list of pages given to the pages property.

 The default implementation of getTargetPage() determines which page to go
to next based on a parameter in the request whose name begins with “_target”
and ends with a number. getTargetPage() removes the “_target” prefix from the
parameter and uses the remaining number as an index into the pages list. For
example, if the request has a parameter whose name is “_target2”, then the user
will be taken to the “course” page.

 Knowing how getTargetPage() works helps you to know how to construct your
Next and Back buttons in your wizard’s HTML pages. For example, suppose that
your user is on the “course” page (index = 2). To create a Next and Back button
on the page, all you must do is create submit buttons that are appropriately
named with the “_target” prefix:

<form method="POST" action="feedback.htm">
…
 <input type="submit" value="Back" name="_target1"> |
 <input type="submit" value="Next" name="_target3">
</form>

When the Back button is clicked, a parameter with its name, “_target1”, is placed
into the request back to FeedbackWizardController. The getTargetPage() method
will process this parameter’s name and send the user to the “instructor” page
(index = 1). Likewise, if the Next button is clicked, getTargetPage() will process a
parameter named “_target3” and decide to send the user to the “facilities” page
(index = 3).

 The default behavior of getTargetPage() is sufficient for most projects. How-
ever, if you would like to define a custom workflow for your wizard, you may over-
ride this method.

Finishing the wizard

That explains how to step back and forth through a wizard form. But how can you
tell the controller that you have finished and that the processFinish() method
should be called?

298 CHAPTER 8
Building the web layer

 There’s another special request parameter called “_finish” that indicates to
AbstractWizardFormController that the user has finished filling out the form and
wants to submit the information for processing. Just like the “_targetX” parame-
ters, “_finish” can be used to create a Finish button on the page:

<form method="POST" action="feedback.htm">
…
 <input type="submit" value="Finish" name="_finish">
</form>

When AbstractWizardFormController sees the “_finish” parameter in the request,
it will pass control to the processFinish() method for final processing of the form.

Canceling the wizard
What if your user is partially through with the survey and decides that they don’t
want to complete it at this time? How can they abandon their input without fin-
ishing the form?

 Aside from the obvious answer—closing their browser—you could also add a
Cancel button to the form:

<form method="POST" action="feedback.htm">
…
 <input type="submit" value="Cancel" name="_cancel">
</form>

As you can see, a Cancel button should have “_cancel” as its name so that, when
clicked, the browser will place a parameter into the request called “_cancel”.
When AbstractWizardFormController receives this parameter, it will pass control
to the processCancel() method.

 By default, processCancel() throws an exception indicating that the cancel
operation is not supported. So, you’ll need to override this method so that it (at a
minimum) sends the user to whatever page you’d like them to go to when they
click Cancel. The following implementation of processCancel() sends the user to
the home page:

protected ModelAndView processCancel(HttpServletRequest request,
 HttpServletResponse response, Object command,
 BindException bindException) throws Exception {

 return new ModelAndView("home");
}

If there is any cleanup work to perform upon a cancel, you could also place that
code in the processCancel() method before the ModelAndView is returned.

Handling requests with controllers 299

Validating a wizard form a page at a time
As with any command controller, the data in a wizard controller’s command
object can be validated using a Validator object. However, there’s a slight twist.

 With other command controllers, the command object is completely popu-
lated at once. But with wizard controllers, the command object is populated a bit
at a time as the user steps through the wizard’s pages. With a wizard, it doesn’t
make much sense to validate all at once because if you validate too early, you will
probably find validation problems that stem from the fact that the user isn’t fin-
ished with the wizard. Conversely, it is too late to validate when the Finish button
is clicked because any errors found may span multiple pages (which form page
should the user go back to?).

 Instead of validating the command object all at once, wizard controllers vali-
date the command object a page at a time. This is done every time that a page
transition occurs by calling the validatePage() method. The default implemen-
tation of validatePage() is empty (i.e., no validation), but you can override it to
do your bidding.

 To illustrate, suppose that on the “general” page you ask the user for their
e-mail address. This field is optional, but if it is entered, it should be in a valid
e-mail address format. The following validatePage() method shows how to vali-
date the e-mail address when the user transitions away from the “general” page:

protected void validatePage(Object command, Errors errors,
 int page) {

 FeedbackSurvey feedback = (FeedbackSurvey) command;
 FeedbackValidator validator =
 (FeedbackValidator) getValidator();

 if(page == 0) {
 validator.validateEmail(feedback.getEmail(), errors);
 }
}

When the user transitions from the “general” page (index = 0), the validate-
Page() method will be called with 0 passed in to the page argument. The first
thing validatePage() does is get a reference to the FeedbackSurvey command
object and a reference to the FeedbackValidator object. Because there’s no need
to do e-mail validation from any other page, validatePage() checks to see that

the user is coming from page 0.

 At this point, you could perform the e-mail validation directly in the
validatePage() method. However, a typical wizard will have several fields that

300 CHAPTER 8
Building the web layer

will need to be validated. As such, the validatePage() method can become quite
unwieldy. We recommend that you delegate responsibility for validation to a fine-
grained field-level validation method in the controller’s validator object, as we’ve
done here with the call to FeedbackValidator’s validateEmail() method.

 All of this implies that you’ll need to set the validator property when you con-
figure the controller:

<bean id="feedbackController" class="com.springinaction.
 training.mvc.FeedbackWizardController">

 <property name="pages">
 <list>
 <value>general</value>
 <value>instructor</value>
 <value>course</value>
 <value>facilities</value>
 </list>
 </property>
 <property name="feedbackService">
 <ref bean="feedbackServices"/>
 </property>
 <property name="validator">
 <bean class="com.springinaction.training.mvc.
 FeedbackValidator"/>
 </property>
</bean>

An important thing to be aware of is that unlike the other command controllers,
wizard controllers never call the standard validate() method of their Validator
object. That’s because the validate() method validates the entire command
object as a whole, whereas it is understood that the command objects in a wizard
will be validated a page at a time.

 If for some reason you need to perform a wholesale validation of the com-
mand object before the processFinish() method is called (or any other valida-
tion prior to the call to processFinish(), for that matter), you should implement
the alternate version of validatePage(), as follows:

protected void validatePage(Object command, Errors errors,
 int page, boolean isFinish) {

 FeedbackSurvey feedback = (FeedbackSurvey) command;
 FeedbackValidator validator =
 (FeedbackValidator) getValidator();

➥

➥

 if(page == 0) {
 validator.validateEmail(feedback.getEmail(), errors);
 }

Handling requests with controllers 301

 if(isFinish) {
 validator.validate(command, errors);
 }
}

This version of validatePage() takes an additional boolean argument that is
set to true if the user has indicated that they have finished with the wizard.
(The default implementation of this version of validatePage() simply calls the
other version.)

8.3.5 Handling multiple actions in one controller

The controllers you’ve seen up until now all perform a single task. This may not
seem too unusual to you, since this is how controller classes in many web frame-
works behave. But one action per controller seems a bit limiting, and you could
end up repeating a lot of code between controllers that perform similar or
related functionality.

 MultiActionController is a special type of controller that is able to perform
multiple actions, with each action being dispatched to a different method. For
example, suppose that you need to revisit ListCoursesController from listing 8.2
to return the list of courses, sorted by either the start date or the course name.

 One way to have ListCoursesController return sorted course lists is to reim-
plement it as a MultiActionController, as shown in listing 8.7.

public class ListCoursesController extends MultiActionController {
 public ListCoursesController() {}

 public ModelAndView coursesUnsorted(HttpServletRequest request,
 HttpServletResponse response) {

 Set courses = courseService.getAllCourses();
 return new ModelAndView("courseList", "courses", courses);
 }

 public ModelAndView coursesSortedByStartDate(
 HttpServletRequest request, HttpServletResponse response) {

 List courses = new ArrayList(courseService.getAllCourses());
 Collections.sort(courses, new ByNameComparator());

 return new ModelAndView("courseList", "courses", courses);

Listing 8.7 A multiaction controller that offers three ways to view a course listing

Display unsorted
course list

Display course list
sorted by date
 }

 public ModelAndView coursesSortedByName(

302 CHAPTER 8
Building the web layer

 HttpServletRequest request, HttpServletResponse response) {

 List courses = new ArrayList(courseService.getAllCourses());
 Collections.sort(courses, new ByNameComparator());

 return new ModelAndView("courseList", "courses", courses);
 }

 private CourseService courseService;
 public void setCourseService(CourseService courseService) {
 this.courseService = courseService;
 }

 public class ByDateComparator implements Comparator {
 public int compare(Object o1, Object o2) {
 Course c1 = (Course) o1; Course c2 = (Course) o2;

 return c1.getStartDate().compareTo(c2.getStartDate());
 }
 }

 public class ByNameComparator implements Comparator {
 public int compare(Object o1, Object o2) {
 Course c1 = (Course) o1; Course c2 = (Course) o2;

 return c1.getName().compareTo(c2.getName());
 }
 }
}

Each of the three course listing methods—coursesUnsorted(), coursesSortedBy-
Date(), and coursesSortedByName()—perform very similar functionality. But each
one produces the course listing in a different sort order. Each of these methods
represents an individual action that can be performed by this single controller.

 By default, the method chosen is based on the filename portion of the
URL. For example, if ListCoursesController is mapped to a URL pattern of
“/courses*.htm”, then

■ “http://…/coursesUnsorted.htm” will be handled by coursesUnsorted().
■ “http://…/coursesSortByDate.htm” will be handled by coursesSortByDate().
■ “http://…/coursesSortByName.htm” will be handled by coursesSortByName().

Display course list
sorted by name
Although this is very straightforward, it’s not necessarily the most desirable way
to choose which method handles the request. You probably will not want to cou-
ple the URL directly to the method name.

Handling requests with controllers 303

Resolving method names
Fortunately, you’re not stuck with this approach to method name resolution. Multi-
ActionController resolves method names based on a method name resolver. The
default method name resolver is InternalPathMethodNameResolver, which
resolves method names based on URL patterns, as shown earlier. But Spring
comes with two other method name resolvers:

■ ParameterMethodNameResolver—Resolves the execution method name based
on a parameter in the request

■ PropertiesMethodNameResolver—Resolves the name of the execution
method by consulting a list of key/value pairs

Regardless of which method name resolver you choose, you’ll need to wire it
into the methodNameResolver property of the MultiActionController to override
the default:

<bean id="multiactionController"
 class="com.springinaction.training.mvc.ListCoursesController">
 <property name="methodNameResolver">
 <ref bean="methodNameResolver"/>
 </property>
</bean>

Now which method name resolver should you choose?
 If you’ve ever used Struts’ DispatchAction, you may like ParameterMethod-

NameResolver. ParameterMethodNameResolver configures your MultiAction-

Controller to behave like DispatchAction, choosing which method to call based on
a parameter passed into the request. Configure ParameterMethodNameResolver
as follows:

<bean id="methodNameResolver" class="org.springframework.web.
 servlet.mvc.multiaction.ParameterMethodNameResolver">
 <property name="paramName">
 <value>action</value>
 </property>
</bean>

The paramName property indicates the name of the request parameter that will
contain the name of the execution method to choose. In this case, it has been set
to action. As such, if ListCoursesController is mapped to a URL pattern of “list-
Courses.htm”, then

➥

■ “http://…/listCourses.htm?action=coursesUnsorted” will be handled by
coursesUnsorted().

304 CHAPTER 8
Building the web layer

■ “http://…/listCourses.htm?action=coursesSortByDate” will be handled by
coursesSortByDate().

■ “http://…/listCourses.htm?action=coursesSortByName” will be handled by
coursesSortByName().

Likewise, it makes it possible to present the choice to the user using an HTML
form. For example:

<form action="listCourses.htm">
…
Sort by: <select name="action">
 <option value="coursesUnsorted">Unsorted</option>
 <option value="coursesSortByDate">Date</option>
 <option value="coursesSortByName">Name</option>
 </select>
…
</form>

Another approach to method name resolution is to map URL patterns to method
names. You can do this using PropertiesMethodNameResolver:

<bean id="methodNameResolver" class="org.springframework.web.
 servlet.mvc.multiaction.PropertiesMethodNameResolver">
 <property name="mappings">
 <props>
 <prop key="/courseList.htm">coursesUnsorted</prop>
 <prop key="/coursesByDate.htm">coursesSortByDate</prop>
 <prop key="/coursesByName.htm">coursesSortByName</prop>
 </props>
 </property>
</bean>

Using PropertiesMethodNameResolver is very similar to using SimpleUrlHandler-
Mapping, except that instead of mapping a URL pattern to a particular controller,
PropertiesMethodNameResolver goes a step further by mapping the URL to a
method in the multiaction controller. PropertiesMethodNameResolver is also the
most sophisticated of the method name resolvers because it completely decouples
the name of the execution method from the view.

 The controllers you’ve seen up until now are all part of the same hierarchy
that is rooted with the Controller interface. Even though the controllers all get a
bit more complex (and more powerful) as you move down the hierarchy, all of the
controllers that implement the Controller interface are somewhat similar. But
before we end our discussion of controllers, let’s take a look at another controller

➥

that’s very different than the others—the throwaway controller.

Handling requests with controllers 305

8.3.6 Working with Throwaway controllers

One last controller that you may find useful is a throwaway controller. Despite the
dubious name, throwaway controllers can be quite useful and easy to use. Throw-
away controllers are significantly simpler than the other controllers, as evidenced
by the ThrowawayController interface:

public interface ThrowawayController {
 ModelAndView execute() throws Exception;
}

To create your own throwaway controller, all you must do is implement this inter-
face and place the program logic in the excecute() method. Quite simple, isn’t it?

 But hold on. How are parameters passed to the controller? The execution
methods of the other controllers are given HttpServletRequest and command
objects to pull the parameters from. If the execute() method doesn’t take any
arguments, how can your controller process user input?

 You may have noticed in figure 8.4 that the ThrowawayController interface is
not even in the same hierarchy as the Controller interface. This is because throw-
away controllers are very different than the other controllers. Instead of being
given parameters through an HttpServletRequest or a command object, throw-
away controllers act as their own command object. If you have ever worked with
WebWork, this may seem quite natural because WebWork actions behave in a sim-
ilar same way.

 As an illustration, let’s rewrite DisplayCourseController from listing 8.3 to be
a throwaway controller. The new throwaway DisplayCourseController is shown in
listing 8.8.

public class DisplayCourseController
 implements ThrowawayController {

 private Integer id;
 public void setId(Integer id) { this.id = id; }

 public ModelAndView execute() throws Exception {
 Course course = courseService.getCourse(id);

 return new ModelAndView("courseDetail", "course", course);
 }

Listing 8.8 Displaying course information using a throwaway controller

Set id

Load course
information

 private CourseService courseService;
 public void setCourseService(CourseService courseService) {

306 CHAPTER 8
Building the web layer

 this.courseService = courseService;
 }
}

Before this new DisplayCourseController handles the request, Spring will call
the setId() method, passing in the value of the id request parameter. Once in
the execute() method, DisplayCourseController simply passes id to course-
Service.getCourse(). One thing that remains the same as the other control-
lers is that the execute() method must return a ModelAndView object when it
has finished.

 You also must declare throwaway controllers in the DispatcherServlet’s con-
text configuration file. There’s only one small difference, as shown here where
DisplayCourseController is configured:

<bean id="displayCourseController"
 class="com.springinaction.training.mvc.DisplayCourseController"
 singleton="false">
 <property name="courseService">
 <ref bean="courseService"/>
 </property>
</bean>

Notice that the singleton attribute has been set to false. This is where throwaway
controllers get their name. By default all beans are singletons, and so unless you
set singleton to false, DisplayCourseController will end up being recycled
between requests. This means its properties (which should reflect the request
parameter values) may also be reused. Setting singleton to false tells Spring to
throw the controller away after it has been used and to instantiate a fresh instance
for each request.

 There’s only one more thing you must do to be able to use throwaway control-
lers. DispatcherServlet knows how to dispatch requests to controllers by using a
handler adapter. The concept of handler adapters is something that you usually
don’t need to worry about because DispatcherServlet uses a default handler
adapter that dispatches to controllers in the Controller interface hierarchy.

 But because ThrowawayController isn’t in the same hierarchy as Controller,
you must tell DispatcherServlet to use a different handler adapter. Specifically,
you must configure ThrowawayControllerHandlerAdapter as follows:

<bean id="throwawayHandler"class="org.springframework.web.
 servlet.mvc.throwaway.ThrowawayControllerHandlerAdapter"/>
By just declaring this bean, you are telling DispatcherServlet to replace its
default handler adapter with ThrowawayControllerHandlerAdapter. But since you

➥

Resolving views 307

will probably use both throwaway controllers and regular controllers alongside
each other in the same application, you will still need DispatcherServlet to use
its regular handler adapter as well. So, you must also declare SimpleController-
HandlerAdapter as follows:

<bean id="simpleHandler" class="org.springframework.web.
 servlet.mvc.SimpleControllerHandlerAdapter"/>

Declaring both handler adapters lets you mix both types of controllers in the
same application.

 Regardless of what functionality your controllers perform, ultimately they’ll
need to return some results to the user. For example, if a student surfs to the URL
that is mapped to ListCoursesController they’ll probably expect to see a list of
courses in their browser when the controller has finished processing the request.

8.4 Resolving views

As you saw in the previous section, most of Spring MVC’s controllers return
ModelAndView objects from their main execution method. You saw how model
objects are passed to the view through the ModelAndView object, but we deferred
discussion of how the logical view name is used to determine which view will ren-
der the results to the user.

 In Spring MVC, a view is a bean that renders results to the user. How it per-
forms the rendering depends on the type of view you’ll use. Most likely you’ll
want to use JavaServer Pages (JSP) to render the results, so that’s what we’ll
assume in this chapter. In chapter 9, you’ll see how to use alternate views with
Spring MVC, such as Velocity and FreeMarker templates or even views that pro-
duce PDF and Microsoft Excel documents.

 The big question at this point is how a logical view name given to a ModelAnd-
View object gets resolved into a View bean that will render output to the user.
That’s where view resolvers come into play.

 A view resolver is any bean that implements org.springframework.web.serv-
let.ViewResolver. Spring MVC regards these beans as special and consults them
when trying to determine which View bean to use.

 Spring comes with four implementations of ViewResolver:

■ InternalResourceViewResolver—Resolves logical view names into View

➥

objects that are rendered using template file resources (such as JSPs and
Velocity templates)

308 CHAPTER 8
Building the web layer

■ BeanNameViewResolver—Resolves logical view names into View beans in the
DispatcherServlet’s application context

■ ResourceBundleViewResolver—Resolves logical view names into View

objects contained in a ResourceBundle
■ XmlViewResolver—Resolves View beans from an XML file that is separate

from the DispatcherServlet’s application context

Let’s take a look at each of these view resolvers, starting with the one you’ll most
likely use: InternalResourceViewResolver.

8.4.1 Using template views

Odds are good that most of the time your controllers won’t be rendering their
output as a result of a custom View object. Instead, you’ll probably use a template
(JSP, Velocity, FreeMarker, etc.) to define how results are presented to your user.

 For example, suppose that after DisplayCourseController is finished, you’d
like to display the course information using the following JSP:

<%@ page contentType="text/html; charset=UTF-8" %>
<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>
<%@ taglib uri="http://java.sun.com/jsp/jstl/fmt" prefix="fmt" %>

<html>
 <head>
 <title>Course: ${course.id}/${course.name}</title>
 </head>

 <body>
 <h2>${course.name}</h2>
 ID:
 <fmt:formatNumber value="${course.id}" pattern="000000"/>

 Instructor:
 ${course.instructor.firstName} ${course.instructor.lastName}

 Starts:
 <fmt:formatDate value="${course.startDate}" type="date"
 dateStyle="full"/>

 Ends:
 <fmt:formatDate value="${course.endDate}" type="date"
 dateStyle="full"/>

 ${course.description}

 Enroll in course

Resolving views 309

 Return to course list
 </body>
</html>

Knowing that DisplayCourseController’s concludes with the following return…

return new ModelAndView("courseDetail", "course", course);

...how can you tell Spring MVC that the logical view name courseDetail means to
use the JSP page above to render the results?

 InternalResourceViewResolver resolves a logical view name into a View object
that delegates rendering responsibility to a template located in the web applica-
tion’s context. It does this by taking the logical view name returned in a ModelAnd-
View object and surrounding it with a prefix and a suffix to arrive at the path of a
template within the web application.

 Let’s say that you’ve placed all of the JSPs for the Spring Training application
in the /WEB-INF/jsp/ directory. Given that arrangement, you’ll need to configure
an InternalResourceViewResolver bean in training-servlet.xml as follows:

<bean id="viewResolver" class="org.springframework.web.
 servlet.view.InternalResourceViewResolver">
 <property name="prefix"><value>/WEB-INF/jsp/</value></property>
 <property name="suffix"><value>.jsp</value></property>
</bean>

When InternalResourceViewResolver is asked to resolve a view, it takes the logical
view name, prefixes it with “/WEB-INF/jsp/”, and suffixes it with “.jsp” to arrive at
the path of the JSP that will render the output. It then hands that path over to a
View object that dispatches the request to the JSP.

 So, when DisplayCourseController returns a ModelAndView object with
courseDetail as the logical view name, it ends up resolving that view name to the
path of a JSP:

InternalResourceViewResolver then loads a View object with the path of the JSP.

➥

This implies that the course detail JSP must be named “courseDetail.jsp”.
 By default the View object is an InternalResourceView, which simply dis-

patches the request to the JSP to perform the actual rendering. But since

310 CHAPTER 8
Building the web layer

courseDetail.jsp uses JSTL tags, you may choose to substitute InternalResource-
View with JstlView by setting InternalResourceViewResolver’s viewClass prop-
erty as follows:

<bean id="viewResolver" class="org.springframework.web.
 servlet.view.InternalResourceViewResolver">
 <property name="viewClass">
 <value>org.springframework.web.servlet.view.JstlView</value>
 </property>
 <property name="prefix"><value>/WEB-INF/jsp/</value></property>
 <property name="suffix"><value>.jsp</value></property>
</bean>

JstlView dispatches the request to a JSP just like InternalResourceView. However
it also exposes JSTL-specific request attributes so that you can take advantage of
JSTL’s internationalization support.

 Although InternalResourceViewResolver is quite easy to use, it may not be the
most appropriate view for all circumstances. It assumes that your view is defined
in a template file within the web application. That may be the case in most situa-
tions, but not always. Let’s look at some other ways to resolve views.

8.4.2 Resolving view beans

As you’ll recall from listing 8.2, ListCoursesController retrieves a list of available
courses using its injected CourseService. Once finished, it sends the list of courses
to the view to be rendered by returning the following ModelAndView object:

new ModelAndView("courseList", "courses", courses);

When you first looked at listing 8.2, you may have assumed that the courseList
view would be rendered by a JSP. However, there’s nothing about ListCourses-
Controller that implies a JSP view at all. What if instead of rendering an HTML
page using a JSP, you wanted to list all of the available courses in a PDF document?

 In chapter 9 you’ll learn how to extend AbstractPdfView to produce PDF doc-
uments. But for now, pretend that you’ve already written CourseListPdfView, an
extension of AbstractPdfView that produces a PDF listing of available courses.

 Since the course listing isn’t represented by a JSP (or any other resource) in the
web application, InternalResourceViewResolver isn’t going to be of much help.
Instead, you’re going to have to choose one of Spring’s other view resolvers.

➥

 BeanNameViewResolver is a view resolver that matches logical view names up
with names of beans in the application context. To use BeanNameViewResolver,
simply declare it as a <bean> in the context configuration file:

Resolving views 311

<bean id="beanNameViewResolver" class=
 "org.springframework.web.servlet.view.BeanNameViewResolver"/>

Now when a controller returns a ModelAndView with a logical view name of
courseList, BeanNameViewResolver will look for a bean named courseList.
This means you must register CourseListPdfView in the context configuration
file as follows:

<bean id="courseList" class=
 "com.springinaction.training.mvc.CourseListPdfView"/>

Declaring view beans in a separate XML file
Another way to resolve View objects by their bean name is to use XmlFileView-
Resolver. XmlFileViewResolver works much like BeanNameViewResolver, but
instead of looking for View beans in the main application context, it consults a
separate XML file. To use XmlFileViewResolver, add the following XML to your
context configuration file:

<bean id="xmlFileViewResolver" class="org.springframework.web.
 servlet.view.XmlFileViewResolver">
 <property name="location">
 <value>/WEB-INF/training-views.xml</value>
 </property>
</bean>

By default, XmlFileViewResolver looks for View definitions in /WEB-INF/
views.xml, but here we’ve set the location property to override the default with “/
WEB-INF/training-views.xml.”

 XmlFileViewResolver is useful if you end up declaring more than a handful
View beans in DispatcherServlet’s context configuration file. To keep the main
context configuration file clean and tidy, you may separate the View declarations
from the rest of the beans.

Resolving views from resource bundles
Yet another way of resolving Views by name is to use ResourceBundleViewResolver.
Unlike BeanNameViewResolver and XmlFileViewResolver, ResourceBundleViewRe-
solver manages view definitions in a properties file instead of XML.

 By employing properties files, ResourceBundleViewResolver has an advantage
over the other view resolvers with regard to internationalization. Whereas the
other view resolvers always resolved a logical view name to a single View imple-
mentation, ResourceBundleViewResolver could return a different View implemen-

➥

tation for the same logical view name, based on the user’s Locale.
 For example, suppose that Spring Training, Inc. were to begin offering courses

in Paris, France, and Berlin, Germany, in addition to their current selection of

312 CHAPTER 8
Building the web layer

courses offered in the United States. Oddly, the French prefer to receive course
listings in Microsoft Excel while the Germans prefer their course listing in plain
HTML. Meanwhile, American students prefer PDF course listings.

 Fortunately, ResourceBundleViewResolver can help keep everyone happy. To
start, configure ResourceBundleViewResolver in training-servlet.xml as follows:

<bean id="bundleViewResolver" class="org.springframework.web.
 servlet.view.ResourceBundleViewResolver">
 <property name="basename">
 <value>views</value>
 </property>
</bean>

The basename property is used to tell ResourceBundleViewResolver how to con-
struct the names of the properties files that contain View definitions. Here it has
been set to views, which means that the View definitions could be in views.prop-
erties (by default), views_en_US.properties (for English-speaking students in the
United States), views_fr_FR.properties (for French students), or views_de_DE.
properties (for German students).

 Next you’ll need to set up the properties files for each locale. Starting with the
default, let’s assume that most of the students will be based in the United States
and will prefer PDF course listings. Place the following line in both views.proper-
ties and views_en_US.properties:

courseList.class=com.springinaction.training.mvc.CourseListPdfView

The name of this property can be broken down into two parts. The first part is
courseList, which is the logical name of the View as returned in ModelAndView.
The second part, class, indicates that you are setting the class name of the View
implementation that should render the output for the courseList view (in this
case, CourseListPdfView).

 For our French students, who prefer Excel spreadsheet listings of courses,
you’ll need to add the following to views_fr_FR.properties:

courseList.class=com.springinaction.training.mvc.CourseListExcelView

Again, this property tells ResourceBundleViewResolver that CourseListExcel-
View is the View implementation to use when rendering the output for the course-
List view.

 Finally, for the German students, you’ll need to set up views_de_DE.properties

➥

to use a JSP-based View as follows:

courseList.class=org.springframework.web.servlet.view.JstlView
courseList.url=/WEB-INF/jsp/courseList.jsp

Resolving views 313

Here the courseList.class property has been set to use a JstlView. JstlView, like
InternalResourceView, uses a JSP contained in the web application to render the
output to the user. But JstlView also adds support for internationalization by tak-
ing advantage of JSTL’s internationalization support.

 Notice that in addition to courseList.class, you must also set course-
List.url. This effectively calls the setUrl() method of JstlView to specify the
location of the JSP file. (This wasn’t necessary with CourseListExcelView or
CourseListPdfView because those views aren’t template-driven.)

 ResourceBundleViewResolver offers a powerful way of resolving views based on
locale. Instead of merely returning the same view for all users, ResourceBundle-
ViewResolver makes it possible to offer a different view of the same information
based on a user’s language and location.

 Now that you have seen four different view resolvers that come with Spring,
which one do you choose? Let’s look at some guidelines that may help you decide.

8.4.3 Choosing a view resolver

Many projects rely on JSP (or some other template language) to render the view
results. Assuming that your application isn’t internationalized or that you won’t
need to display a completely different view based on a user’s locale, we recommend
InternalResourceViewResolver because it is simply and tersely defined (as
opposed to the other view resolvers that require you to explicitly define each view).

 If, however, your views will be rendered using a custom View implementation
(e.g., PDF, Excel, images, etc.), you’ll need to consider one of the other view
resolvers. We favor BeanNameViewResolver and XmlFileViewResolver over Resource-
BundleViewResolver because they let you define your View beans in a Spring con-
text configuration XML file.

 Given the choice between BeanNameViewResolver and XmlFileViewResolver,
we would settle on BeanNameViewResolver only when you have a handful of View
beans that would not significantly increase the size of DispatcherServlet’s con-
text file. If the view resolver is managing a large number of View objects, we’d
choose XmlFileViewResolver to separate the View bean definitions into a sepa-
rate file.

 In the rare case that you must render a completely different view depending
on a user’s locale, you have no choice but to use ResourceBundleViewResolver.
Using multiple view resolvers
Consider the case where most of an application’s views are JSP-based, but only a
handful require one of the other view resolvers? For example, most of the Spring

314 CHAPTER 8
Building the web layer

Training application will use JSPs to render output, but (as you’ll see in chapter 9)
some responses will render PDF and Excel output. Must you choose a BeanName-
ViewResolver or XmlFileViewResolver and explicitly declare all of your views just
to handle the special cases of PDF and Excel?

 Fortunately, you aren’t limited to choosing only one view resolver for your
application. To use multiple view resolvers, simply declare all of the view resolver
beans you will need in your context configuration file. For example, to use both
InternalResourceViewResolver (for your JSPs) and XmlFileViewResolver (for
everything else) together, declare them as follows:

<bean id="viewResolver" class=
 "org.springframework.web.servlet.view.InternalResourceViewResolver">
 <property name="prefix"><value>/WEB-INF/jsp/</value></property>
 <property name="suffix"><value>.jsp</value></property>
 <property name="order"><value>1</value></property>
</bean>
<bean id="xmlFileViewResolver" class=
 "org.springframework.web.servlet.view.XmlFileViewResolver">
 <property name="location">
 <value>/WEB-INF/views.xml</value>
 </property>
 <property name="order"><value>2</value></property>
</bean>

Because it’s quite possible that more than one view resolver may be able to
resolve the same logical view name, you should set the order property on each
of your view resolvers to help Spring determine which resolver has priority
over the others when a logical view name is ambiguous among more than one
resolver. As shown here, the InternalResourceViewResolver has a lower order
than the XmlFileViewResolver, so in the event of ambiguity InternalResource-
ViewResolver wins.

8.5 Using Spring’s bind tag

Now that you are handling requests and forwarding them to JSPs, you will need to
access the model data in order to display it on the page. Fortunately, Spring pro-
vides a tag library for doing this very thing. This allows you to not only see your
command objects and all of their properties, but any error messages associated
with these properties as well.

 In order to take advantage of this tag library, you must first register it in your

application. Spring comes with a tag library descriptor (TLD) file named
spring.tld. Place this file under the WEB-INF directory in your web application.
Next, register the tag library in your web.xml file:

Using Spring’s bind tag 315

<taglib>
 <taglib-uri>/spring</taglib-uri>
 <taglib-location>/WEB-INF/spring.tld</taglib-location>
</taglib>

The Spring tag library is now ready to be used in your JSPs. The <spring-bind>
tag is what you will use to access command objects and any error messages asso-
ciated with them. This tag has only one attribute—path—that indicates the bean
or bean property being used. For example, to access the firstName property of a
Student object, you would set the path attribute to student.firstName. This is
made available through a org.springframework.web.servlet.support.Bind-

Status object that is placed in page scope with the name status. This object has
three properties that will be of use to you on a JSP page:

■ expression—The expression used to retrieve the property. For example, if
you are using this tag to access the firstName property of a Student, the
expression property would have a value of firstName.

■ value—The value, as a String, of the property. If the property is not a String,
it will be converted by the PropertyEditor associated with the property.

■ errorMessaages—An array of Strings that are the error messages associ-
ated with this property.

Listing 8.9 shows how you would use this tag on a form for registering a Student.

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>
<%@ taglib prefix="spring" uri="/spring" %>
…
<form method="POST" action="/registerStudent.htm">
<spring:bind path="student.firstName">
First name:
<input type="text"
 name="<c:out value="${status.expression}"/>"
 value="<c:out value="${status.value}"/>">
</spring:bind>
…
</form>
…

Listing 8.9 Populating a form using the <spring-bind> tag

Bind to firstName
property

➥

Set input name
to status
expression

➥ Bind input value
to status value
In this example, we use both the expression and value properties of the status
object. Notice that we use the expression value to set the name of our form input
tag. Doing so will allow Spring to automatically map the form input field to our

316 CHAPTER 8
Building the web layer

Student object when the form is submitted. Using the value property as the value
of the form element also has its benefits. This property will display the current
value of the field, which will likely be the value of that property. However, this
could also be a rejected value from a previous form submission, such as a date
String improperly formatted. This can be extremely useful so that you can display
rejected values to the user to they can see what they did wrong and correct it.

 How exactly will users know what they did wrong? This is where the errorMes-
sages property comes in. As we said, this is an array Strings that are the error
messages for a particular property. But perhaps showing an error message for
each property is a little too fine grained. You also have the ability to bind to the
actual command objects and display all error messages associated with this
object, including any errors associated with a particular property. Listing 8.10
shows how you would do this.

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>
<%@ taglib prefix="spring" uri="http://www.springframework.org/tags" %>
…
<form method="POST" action="/registerStudent.htm">
<spring:bind path="student">
<c:forEach items="${status.errorMessages}"
 var="errorMessage">

 <c:out value="${errorMessage}"/>

</c:forEach>
</spring:bind>
…
</form>
…

Now instead of binding to a specific property, we are binding directly to our com-
mand object. This way we can iterate over every error message associated with
our Student object. This is important because not every error message has to be
associated with a particular property.

 Now you have a way for accessing your model objects from your JSP with using
Spring MVC. Now let’s take a look at what to do when things go wrong.

Listing 8.10 Displaying error message using <spring-bind> tag

Bind to Student
Iterate over error messages

➥
Show error
message

Iterate over error messages

Summary 317

8.6 Handling exceptions

There’s a bumper sticker that says “Failure is not an option: It comes with the soft-
ware.” Behind the humor of this message is a universal truth. Things don’t always
go well in software. When an error happens (and it inevitably will happen), do you
want your application’s users to see a stack trace or a friendlier message? How can
you gracefully communicate the error to your users?

 SimpleMappingExceptionResolver comes to the rescue when an exception is
thrown from a controller. Use the following <bean> definition to configure
SimpleMappingExceptionResolver to gracefully handle any java.lang.Exeptions
thrown from Spring MVC controllers:

<bean id="exceptionResolver" class="org.springframework.web.
 servlet.handler.SimpleMappingExceptionResolver">
 <property name="exceptionMappings">
 <props>
 <prop key="java.lang.Exception">friendlyError</prop>
 </props>
 </property>
</bean>

The exceptionMappings property takes a java.util.Properties that contains a
mapping of fully qualified exception class names to logical view names. In this
case, the base Exception class is mapped to the View whose logical name is
friendlyError so that if any errors are thrown, users won’t have to see an ugly
stack trace in their browser.

 When a controller throws an Exception, SimpleMappingExceptionResolver will
resolve it to friendlyError which in turn will be resolved to a View using whatever
view resolver(s) are configured. If the InternalResourceViewResolver from sec-
tion 8.4.1 is configured, then perhaps the user will be sent to the page defined in
/WEB-INF/jsp/friendlyError.jsp.

8.7 Summary

The Spring framework comes with a powerful and flexible web framework that is
itself based on Spring’s tenets of loose-coupling, inversion of control, and exten-
sibility. In this chapter, you’ve been taken on a whirlwind tour of all of the moving
parts that make up the web layer of a Spring MVC application.

 At the beginning of a request, Spring offers a variety of handler mappings

➥

that help to choose a controller to process the request. You are given a choice to
map URLs to controllers based on the controller bean’s name, a simple URL-to-
controller mapping, or source-level metadata.

318 CHAPTER 8
Building the web layer

 To process a request, Spring provides a wide selection of controller classes with
complexity ranging from the very simple Controller interface all the way to the
very powerful wizard controller and several complex layers in between, letting
you choose a controller with an appropriate amount of power (and no more com-
plexity than required). This sets Spring apart from other MVC web frameworks
such as Struts and WebWork, where your choices are limited to only one or two
Action classes.

 On the return trip to the client, Spring MVC’s view resolvers let you choose a
View to render the results of the request as output to the user. As with Spring
MVC’s handler mapping, you are afforded several view resolvers, each providing
a different scheme for choosing a View, including finding views by the View bean’s
name, from the web application’s resource directory, or from a ResourceBundle.

 All in all, Spring MVC maintains a loose coupling between how a controller is
chosen to handle a request and how a view is chosen to display output. This is a
powerful concept, allowing you to mix-’n’-match different Spring MVC parts to
build a web layer most appropriate to your application.

 In the next chapter, we’ll build on Spring MVC by taking the view layer beyond
JSP. You’ll learn how to use alternate template languages such as Velocity and
FreeMarker. And you’ll also learn how to dynamically produce binary output,
including PDF documents, Excel spreadsheets, and images.

View layer alternatives
This chapter covers
■ Using Velocity templates
■ Integrating with FreeMarker
■ Working with Jakarta Tiles
■ Generating PDF and Excel files
319

320 CHAPTER 9
View layer alternatives

In October 1908, Henry Ford rolled out the “car for the great multitude”: the
Model-T Ford. The sticker price: $950. To speed assembly, all Model-Ts were
painted black because black paint dried the fastest. Legend quotes Henry Ford as
saying “Any customer can have a car painted any color that he wants so long as it
is black.”1

 Automobiles have come a long way since 1908. In addition to a dizzying selec-
tion of body styles, you also get to choose among several options, including the
type of radio, whether or not you get power windows and door locks, and cloth
versus leather upholstery. And nowadays any customer can have any color that
they want … including, but not limited to, black.

 In chapter 8 we showed you how to use Spring’s MVC and JSP to build the web
layer on top of your applications. Certainly, Spring MVC and JSP are a powerful
combination and a strong platform to build your web applications upon. But is
this the only choice afforded to Spring developers?

 Although JSP is commonly used to produce the view of Java-based web applica-
tions, JSP is not everyone’s choice. Back in JSP’s infancy, many developers turned to
alternative templating solutions, such as Jakarta Velocity and FreeMarker, when JSP
didn’t live up to their expectations. Although JSP has grown up in the last few
years by adding support for custom tag libraries and virtually eliminating the
need for scriptlet code, many of those who shunned it early on still prefer the
other options.

 JSP also has its limitations. JSP is primarily intended to produce HTML and
XML output for web applications. Velocity and FreeMarker, on the other hand,
are flexible with regard to the content that they produce and are able to generate
virtually any kind of text file. JSP is incapable of producing binary content such as
Microsoft Excel spreadsheets, Adobe PDF documents, or images.

 Even if you like JSP, you may want to place your JSP pages in a layout frame-
work such as Jakarta Tiles to make your application more aesthetically pleasing.

 As it turns out, Spring MVC is very flexible with regard to the content pro-
duced. If you aren’t a big fan of JSP, you may be delighted to learn Spring comes
with view resolvers that enable you to use Velocity or FreeMarker instead. If you
need to produce dynamically generated binary content, Spring offers support for
generating Excel spreadsheets and PDF documents within Spring MVC.

 In this chapter, we’ll show you how to configure Spring MVC to
1 Although this quote has been historically attributed to Henry Ford, some question whether or not he
ever actually spoke these words. With regard to the historical accuracy of this quote, consider another
quote by Henry Ford: “History is more or less bunk.”

Using Velocity templates 321

■ Use Velocity or FreeMarker templates instead of JSP

■ Use Jakarta Tiles to lay out your application pages
■ Produce dynamically created binary Excel spreadsheets, PDF documents,

and images

Let’s begin by looking at how to swap out JSPs with alternative view-layer lan-
guages, starting with Velocity.

9.1 Using Velocity templates

Velocity is an easy-to-use template language for Java applications. Velocity tem-
plates contain no Java code, making them easy to understand by nondevelopers
and developers alike. From Velocity’s user guide: “Velocity separates Java code
from the web pages, making the web site more maintainable over the long run
and providing a viable alternative to JavaServer Pages.”

 Aside from JSP, Velocity is probably the most popular template language for
web-based applications. So it is highly likely that you may want to develop your
Spring-based application using Velocity as the view-layer technology. Fortunately,
Spring supports Velocity as a view-layer templating language for Spring MVC.

 Let’s see how to use Velocity with Spring MVC by reimplementing the view
layer of the Spring Training application so that it’s based on Velocity.

9.1.1 Defining the Velocity view
Suppose that you’ve chosen to use Velocity, instead of JSP, to produce the view
for the Spring Training application. One of the pages you’ll need to write as a
Velocity template is the page that shows a list of available courses. Listing 9.1
shows courseList.vm, the Velocity equivalent of courseList.jsp used to display a
list of courses.

<html>
 <head>
 <title>Course List</title>
 </head>

 <body>
 <h2>COURSE LIST</h2>

Listing 9.1 A Velocity-based listing of courses
 <table width="600" border="1" cellspacing="1" cellpadding="1">
 <tr bgcolor="#999999">
 <td>Course ID</td>

322 CHAPTER 9
View layer alternatives

 <td>Name</td>
 <td>Instructor</td>
 <td>Start</td>
 <td>End</td>
 </tr>
#foreach($course in $courses)
 <tr>
 <td>

 ${course.id}

 </td>
 <td>${course.name}</td>
 <td>${course.instructor.lastName}</td>
 <td>${course.startDate}</td>
 <td>${course.endDate}</td>
 </tr>
#end
 </table>
 </body>
</html>

The first thing you’ll probably notice about this template is that there are no tem-
plate tags. That’s because Velocity isn’t tag-based like JSP. Instead, Velocity
employs its own language—known as Velocity Template Language (VTL)—for
control flow and other directives. In courseList.vm, the #foreach directive is used
to loop through a list of courses, displaying course details with each iteration.

 Despite this basic difference between Velocity and JSP, you’ll find that Velocity’s
expression language resembles that of JSP. In fact, JSP merely followed in Veloc-
ity’s footsteps when using the ${} notation in its own expression language.

 This template demonstrates only a fraction of what you can do with Velocity.
To learn more, visit the Velocity home page at http://jakarta.apache.org/velocity.

 Now that the template has been created, you’ll need to configure Spring to use
Velocity templates for the view in MVC applications.

9.1.2 Configuring the Velocity engine
The first thing to configure is the Velocity engine itself. To do this, declare a
VelocityConfigurer bean in the Spring configuration file, as follows:

<bean id="velocityConfigurer" class="org.springframework.
 web.servlet.view.velocity.VelocityConfigurer">

Iterate over all courses

Display course ID

Display course name
and instructor

Display
dates

Iterate over all courses

➥

 <property name="resourceLoaderPath">
 <value>WEB-INF/velocity/</value>
 </property>
</bean>

Using Velocity templates 323

VelocityConfigurer sets up the Velocity engine in Spring. Here, we’ve told Veloc-
ity where to find its templates by setting the resourceLoaderPath property. We rec-
ommend placing the templates in a directory underneath the WEB-INF directory
so that the templates can’t be accessed directly.

 You can also set other Velocity configuration details by setting the velocity-
Properties property. For example, consider the following declaration of Veloci-
tyConfigurer:

<bean id="velocityConfigurer" class="org.springframework.
 web.servlet.view.velocity.VelocityConfigurer">
 <property name="resourceLoaderPath">
 <value>WEB-INF/velocity/</value>
 </property>
 <property name="velocityProperties">
 <props>
 <prop key="directive.foreach.counter.name">loopCounter</prop>
 <prop key="directive.foreach.counter.initial.value">0</prop>
 </props>
 </property>
</bean>

Notice that velocityProperties takes a <props> element to set multiple proper-
ties. The properties being set are the same as those that would normally be set in
a “velocity.properties” file if this were a typical Velocity application.

 By default, Velocity’s #foreach loop maintains a counter variable called $velocity-
Count that starts with a value of 1 on the first iteration of the loop. But here we’ve
set the directive.foreach.counter.name property to loopCounter so that the loop
counter can be referred to with $loopCounter. We’ve also made the loop counter
zero-based by setting the directive.foreach.counter.initial.value property to
0. (For more on Velocity configuration properties, refer to Velocity’s developer
guide at http://jakarta.apache.org/velocity/developer-guide.html.)

9.1.3 Resolving Velocity views

The final thing you must do to use Velocity template views is to configure a view
resolver. Specifically, declare a VelocityViewResolver bean in the context config-
uration file as follows:

<bean id="viewResolver" class="org.springframework.
 web.servlet.view.velocity.VelocityViewResolver">
 <property name="suffix"><value>.vm</value></property>
</bean>

➥

VelocityViewResolver is to Velocity what InternalResourceViewResolver is to JSP.
Just like InternalResourceViewResolver, it has prefix and suffix properties that it

324 CHAPTER 9
View layer alternatives

uses with the view’s logical name to construct a path to the template. Here, only
the suffix property is set with the “.vm” extension. No prefix is required because the
path to the template directory has already been set through VelocityConfigurer’s
resourceLoaderPath property.

NOTE Here the bean’s ID is set to viewResolver. This is significant when
DispatcherServlet is not configured to detect all view resolvers. If you
are using multiple view resolvers, then you’ll probably need to change
the ID to something more appropriate (and unique), such as velocity-
ViewResolver.

At this point, your application is ready to render views based on Velocity tem-
plates. All you need to do is return a ModelAndView object that references the view
by its logical name. In the case of ListCourseController, there’s nothing to do
because it already returns a ModelAndView as follows:

return new ModelAndView("courseList", "courses", allCourses);

The view’s logical name is “courseList”. When the view is resolved, “courseList”
will be suffixed with “.vm” to create the template name of “courseList.vm”. Velocity-
ViewResolver will find this template in the WEB-INF/velocity/ path.

 As for the “courses” model object, it will be exposed in the Velocity template as
a Velocity property. In listing 9.1, it is the collection used in the #foreach directive.

9.1.4 Formatting dates and numbers

Although the application is now set to render Velocity views, we have a few loose
ends to tie up. If you compare courseList.vm from listing 9.1 to courseList.jsp,
you’ll notice that courseList.vm doesn’t apply the same formatting to the course’s
ID and its start and end dates as in courseList.jsp. In courseList.jsp, the course ID
is displayed as a six-digit number with leading zeroes and all dates are displayed
in “full” format. For courseList.vm to be complete, you’ll need to tweak it to for-
mat the ID and date properties.

 The VTL doesn’t directly support date and number formatting. However,
Velocity does have date and number utility tools that support formatting. To
enable these tools, you’ll need to tell the VelocityViewResolver the name of the
attributes to expose them through. These attributes are specified through Velocity-
ViewResolver’s dateToolAttribute and numberToolAttribute properties:
<bean id="viewResolver" class="org.springframework.
 web.servlet.view.velocity.VelocityViewResolver">
…

➥

Using Velocity templates 325

 <property name="dateToolAttribute">
 <value>dateTool</value>
 </property>
 <property name="numberToolAttribute">
 <value>numberTool</value>
 </property>
</bean>

Here, the number tool is assigned to a numberTool attribute in Velocity. So, to for-
mat the course ID, all you need to do is reference the course ID through the num-
ber tool’s format() function. For example:

$numberTool.format("000000", course.id)

The first parameter to format() is the pattern string. Here we’ve specified that
the course’s ID be displayed in a six-digit field with leading zeroes as necessary.
The pattern string adheres to the same syntax as java.text.DecimalFormat. Refer
to the Velocity’s documentation for NumberTool for more information on this
tool’s functions.

 Likewise, the date tool has been assigned to the dateTool attribute. To format
the course’s start and end dates, you’ll use the date tool’s format() function:

$dateTool.format("FULL", course.startDate)
$dateTool.format("FULL", course.endDate)

Just as with the number tool’s format() function, the first parameter is the pat-
tern string. This string adheres to the same syntax as that of java.text.Simple-
DateFormat. In addition, you can specify one of the standard java.text.DateFormat
patterns by setting the pattern string to one of FULL, LONG, MEDIUM, SHORT, or
DEFAULT. Here we’ve set it to FULL to indicate the full date format. Refer to Veloc-
ity’s documentation for DateTool for more information on this tool’s functions.

9.1.5 Exposing request and session attributes

Although most data that needs to be displayed in a Velocity template can be
passed to the view through the model Map given to the ModelAndView object, there
are times when you may wish to display attributes that are in the servlet’s request
or session. For example, if a user is logged into the application, that user’s infor-
mation may be carried in the servlet session.

 It would be clumsy to copy attributes out of the request or session into the model
Map in each controller. Fortunately, VelocityViewResolver can copy the attributes

into the model for you. The exposeRequestAttributes and exposeSession-
Attributes properties tell VelocityViewResolver whether or not you want servlet
request and session attributes copied into the model. For example:

326 CHAPTER 9
View layer alternatives

<bean id="viewResolver" class="org.springframework.
 web.servlet.view.velocity.VelocityViewResolver">
…
 <property name="exposeRequestAttributes">
 <value>true</value>
 </property>
 <property name="exposeSessionAttributes">
 <value>true</value>
 </property>
</bean>

By default, both of these properties are false. But here we’ve set them both to
true so that both request and session attributes will be copied into the model and
therefore be visible in the Velocity template.

9.1.6 Binding form fields in Velocity

In chapter 8, you saw how to use Spring’s <spring:bind> JSP tag to bind form
fields to properties of a command object. This tag was also useful for displaying
field-related errors to the user.

 Fortunately, you don’t have to give up the functionality that <spring:bind>
provides if you are using Velocity instead of JSP. Spring comes with a couple of
Velocity macros that mimic the functionality of the <spring:bind> tag.

 For example, suppose that the student registration form from the Spring
Training application is written as a Velocity template. Listing 9.2 shows a snippet
from registerStudent.vm that demonstrates how to use the #springBind macro.

#springBind("command.phone")
phone: <input type="text"
 name="${status.expression}"
 value="$!status.value">
${status.errorMessage}

#springBind("command.email")
email: <input type="text"
 name="${status.expression}"
 value="$!status.value">
${status.errorMessage}

➥

Listing 9.2 Using #springBind in a Velocity template

Bind status variable

Name form field
Display value

Display
error
messages
(if any)

Bind status variable

Name form field
Display value
The #springBind macro takes the path of the field to be bound. It sets a status
variable in the template that holds the name of the field, the value of the field,
and any error messages that may be incurred (perhaps from a validator).

Working with FreeMarker 327

 If your error messages contain characters that have special meaning in HTML
(e.g., <, >, &), you may want to escape the error messages so that they display
correctly in a web browser. If that’s the case, then you may want to use the
#springBindEscaped macro instead of #springBind:

#springBindEscaped("command.email", true)

In addition to the field path, #springBindEscaped takes a boolean argument that
indicates whether or not to escape the error message. If this argument is true,
then the macro will escape HTML-special characters in the error message. If this
argument is false, then #springBindEscaped behaves exactly like #springBind,
leaving the HTML-special characters “unescaped.”

 To be able to use the Spring macros in your templates, you’ll need to enable the
macro using the exposeSpringMacroHelpers property of VelocityViewResolver:

<bean id="viewResolver" class="org.springframework.
 web.servlet.view.velocity.VelocityViewResolver">
…
 <property name=”exposeSpringMacroHelpers”>
 <value>true</value>
 </property>
</bean>

By setting the exposeSpringMacroHelpers property to true, you’ll ensure that
your Velocity templates will have access to the #springBind and #springBind-
Escaped macros.

 Although Velocity is a widely used alternative to JSP, it is not the only alternate
templating option available. FreeMarker is another well-known template lan-
guage that aims to replace JSP in the view layer of MVC applications. Let’s see how
to plug FreeMarker into your Spring MVC application.

9.2 Working with FreeMarker

FreeMarker is slightly more complex than Velocity, but only as the result of being
slightly more powerful. FreeMarker comes with built-in support for several useful
tasks, such as date and number formatting and white-space removal. These fea-
tures are only available in Velocity through add-on tools.

 You’ll soon see how using FreeMarker with Spring MVC isn’t much different
than using Velocity with Spring MVC. But first things first—let’s start by writing a
FreeMarker template to be used in the Spring Training application.

➥

328 CHAPTER 9
View layer alternatives

9.2.1 Constructing a FreeMarker view

Suppose that after much consideration, you decide that FreeMarker templates
are more suited to your tastes than Velocity. So, instead of developing the view
layer of the Spring Training application using Velocity, you’d like to plug
FreeMarker into Spring MVC. Revisiting the course listing page, you produce
courseList.ftl (listing 9.3), the page that displays a list of courses being offered.

<html>
 <head>
 <title>Course List</title>
 </head>

 <body>
 <h2>COURSE LIST</h2>

 <table width="600" border="1" cellspacing="1" cellpadding="1">
 <tr bgcolor="#999999">
 <td>Course ID</td>
 <td>Name</td>
 <td>Instructor</td>
 <td>Start</td>
 <td>End</td>
 </tr>
<#list courses as course>
 <tr>
 <td>

 ${course.id?string("000000")}

 </td>
 <td>${course.name}</td>
 <td>${course.instructor.lastName}</td>
 <td>${course.startDate?string.long}</td>
 <td>${course.endDate?string.long}</td>
 </tr>
</#list>
 </table>
 </body>
</html>

You’ll notice that the FreeMarker version of the course listing isn’t dramatically

Listing 9.3 Listing courses using FreeMarker’s template language

Loop through all courses

Format the course ID

Format
the dates
different than the Velocity version from listing 9.1. Just as with Velocity (or JSP),
the ${} notation is used as an expression language to display attribute values.

Working with FreeMarker 329

 But you may also notice that the course ID and dates have extra arguments
used to format the fields. FreeMarker, unlike Velocity, has built-in support for for-
matting numbers and dates.

 The courseList.ftl template barely scratches the surface of FreeMarker’s capa-
bilities. For more information on FreeMarker, visit the FreeMarker home page at
http://freemarker.sourceforge.net.

9.2.2 Configuring the FreeMarker engine

Just like Velocity, FreeMarker’s engine must be configured in order for Spring’s
MVC to use FreeMarker templates to render views. Declare a FreeMarkerConfig-
urer in the context configuration file like this:

<bean id="freemarkerConfig" class="org.springframework.
 web.servlet.view.freemarker.FreeMarkerConfigurer">
 <property name="templateLoaderPath">
 <value>WEB-INF/freemarker/</value>
 </property>
</bean>

FreeMarkerConfigurer is to FreeMarker as VelocityConfigurer is to Velocity. You
use it to configure the FreeMarker engine. As a minimum, you must tell
FreeMarker where to find the templates. You can do this by setting the template-
LoaderPath property.

 You can configure additional FreeMarker settings by setting them as proper-
ties through the freemarkerSettings property. For example, FreeMarker reloads
and reparses templates if five seconds (by default) have elapsed since the template
was last checked for updates. But checking for template changes can be time con-
suming. If your application is in production and you don’t expect the template to
change very often, you may want to stretch the update delay to an hour or more.

 To do this, set FreeMarker’s template_update_delay setting through the
freemarkerSettings property. For example:

<bean id="freemarkerConfig" class="org.springframework.
 web.servlet.view.freemarker.FreeMarkerConfigurer">
…
 <property name="freemarkerSettings">
 <props>
 <prop key="template_update_delay">3600</prop>
 </props>
 </property>
</bean>

➥

➥

Notice that like VelocityConfigurer’s velocityProperties property, the free-
markerSettings property takes a <props> element. In this case, the only <prop> is

330 CHAPTER 9
View layer alternatives

one to set the template_update_delay setting to 3600 (seconds) so that the tem-
plate will only be checked for updates after an hour has passed.

9.2.3 Resolving FreeMarker views

The next thing you’ll need to do is to declare a view resolver for FreeMarker:

<bean id="viewResolver" class="org.springframework.
 web.servlet.view.freemarker.FreeMarkerViewResolver">
 <property name="suffix"><value>.ftl</value></property>
</bean>

FreeMarkerViewResolver works just like VelocityViewResolver or Internal-
ResourceViewResolver. Template resources are resolved by prefixing a view’s log-
ical name with the value of the prefix property and are suffixed with the value of
the suffix property. Again, just as with VelocityViewResolver, we’ve only set the
suffix property because the template path is already defined in FreeMarker-
Configurer’s templateLoaderPath property.

Exposing request and session attributes
In section 9.1.3, you saw how to tell VelocityViewResolver to copy request and/or
session attributes into the model map so that they’ll be available as variables in
the template. You can do the same thing with FreeMarkerViewResolver to expose
request and session attributes as variables in a FreeMarker template. To do so, set
either the exposeRequestAttributes or exposeSessionAttributes properties (or
both) to true:

<bean id="viewResolver" class="org.springframework.
 web.servlet.view.freemarker.FreeMarkerViewResolver">
…
 <property name="exposeRequestAttributes">
 <value>true</value>
 </property>
 <property name="exposeSessionAttributes">
 <value>true</value>
 </property>
</bean>

Here, both properties have been set to true. As a result, both request and session
attributes will be copied into the template’s set of attributes and will be available
to display using FreeMarker’s expression language.

➥

9.2.4 Binding form fields in FreeMarker

One last thing you may want to do with FreeMarker is to bind form fields to com-
mand properties. In chapter 8, you used the JSP <spring:bind> tag and in

Working with FreeMarker 331

section 9.1.6, you used the #springBind Velocity macro in Velocity to accomplish
this. Similarly, Spring provides a set of FreeMarker macros to perform the binding.

 The equivalent FreeMarker macros are <@spring.bind> and <@spring.bind-
Escaped>. For example, listing 9.4 shows a section of code from registerStudent.ftl
that uses the <@spring.bind> directive to bind status information to the form.

<@spring.bind "command.phone" />
phone: <input type="text"
 name="${spring.status.expression}"
 value="${spring.status.value}">
${spring.status.errorMessage}

<@spring.bind "command.email" />
 email: <input type="text"
 name="${spring.status.expression}"
 value="${spring.status.value}">
${spring.status.errorMessage}

You may have noticed that listing 9.4 is very similar to listing 9.2. But there are
two differences. First, instead of using the Velocity #springBind macro, the
FreeMarker version uses the <@spring.bind> directive. Also, <@spring.bind>
binds the status information to ${spring.status} instead of ${status}.

 Just as with Spring’s Velocity macros, in order to use these macros you must
enable the FreeMarker macros by setting the exposeMacroHelpers property of
FreeMarkerViewResolver to true:

<bean id="viewResolver" class="org.springframework.
 web.servlet.view.freemarker.FreeMarkerViewResolver">
…
 <property name=”exposeSpringMacroHelpers”>
 <value>true</value>
 </property>
</bean>

Finally, there’s one more thing you’ll need to do so that you’ll be able to use the
FreeMarker macros. Add the following line to the top of all FreeMarker templates
that will use the <@spring.bind> or <@spring.bindEscaped> macro:

<#import "/spring.ftl" as spring />

Listing 9.4 Using <@spring.bind> in a FreeMarker template

Bind status variable

Name form field
Display value

Display
error
messages
(if any)

Bind status variable

Name form field
Display value

➥

This line will import the Spring macros for FreeMarker into the template.

332 CHAPTER 9
View layer alternatives

9.3 Designing page layout with Tiles

Up until now, we’ve kept the look and feel of the Spring Training application very
generic. We’ve focused on how to write Spring-enabled web applications with lit-
tle regard for aesthetics. But how an application looks often dictates its success.
To make the Spring Training application visually appealing, it needs to be placed
in a template that frames its generic pages with eye-popping graphics.

 Jakarta Tiles is a framework for laying out pieces of a page in a template.
Although originally created as part of Jakarta Struts, Tiles can be used with or
without Struts. For our purposes, we’re going to use Tiles alongside Spring’s
MVC framework.

 Although we’ll give a brief overview of working with Tiles, we recommend
that you read chapter 11 of Struts in Action (Manning, 2002) to learn more about
using Tiles.

9.3.1 Tile views

The template for the Spring Training application will
be reasonably simple. It will have a header where the
company logo and motto will be displayed, a footer
where contact information and a copyright will be dis-
played, and a larger area in the middle where the
main content will be displayed. Figure 9.1 shows a
box diagram of how the template will be laid out.

 The template, mainTemplate.jsp (listing 9.5),
defines this layout. It uses HTML to define the basic
layout of a page and uses the <tiles:getAsString> and
<tiles:insert> tags as placeholders for the real con-
tent to be filled in for each individual page.

<%@ taglib prefix="tiles"
 uri="http://jakarta.apache.org/struts/tags-tiles" %>

<html>
 <head>
 <title><tiles:getAsString name="title"/></title>

Listing 9.5 mainTemplate.jsp, the Spring Training template

Figure 9.1 The layout of the
Spring Training application
template
 </head>
 <body>
 <table width="100%" border="0">

Display
page title

Designing page layout with Tiles 333

 <tr>
 <td><tiles:insert name="header"/></td>
 </tr>
 <tr>
 <td valign="top" align="left">
 <tiles:insert name="content"/>
 </td>
 </tr>
 <tr>
 <td>
 <tiles:insert name="footer"/>
 </td>
 </tr>
 </table>
 </body>
</html>

With the template written, the next step is to create a Tiles definition file. A Tiles
definition file is XML that describes how to fill in the template. The file can be
named anything you want, but for the purposes of the Spring Training applica-
tion, “training-defs.xml” seems appropriate.

 The following excerpt from training-defs.xml outlines the main template
(called “template”), filling in each of its components with some default values:

<tiles-definitions>
 <definition name="template" page="/tiles/mainTemplate.jsp">
 <put name="title" value="Default title"/>
 <put name="header" value="/tiles/header.jsp"/>
 <put name="content" value="/tiles/defaultContentPage.jsp"/>
 <put name="footer" value="/tiles/footer.jsp"/>
 </definition>
…
</tiles-definitions>

Here, the header and footer components are given the path to JSP files that
define how the header and footer should look. When Tiles builds a page, it will
replace the <tiles:insert> tags named header and footer with the output result-
ing from header.jsp and footer.jsp, respectively.

 As for the title and content components, they are just given some dummy
values. Because it’s just a template, you’ll never view the template page directly.
Instead, when you view another page that is based on template, the dummy val-
ues for title and content will be overridden with real values.

Display tiles
components
 The course detail page is a typical example of the pages in the application that
will be based on template. It is defined in training-defs.xml like this:

334 CHAPTER 9
View layer alternatives

<definition name="courseDetail" extends="template">
 <put name="title" value="Course Detail" />
 <put name="content" value="/tiles/courseDetail.jsp"/>
</definition>

Extending template ensures that the courseDetail page will inherit all of its com-
ponent definitions. However, it chooses to override the template’s title compo-
nent with Course Detail so that the page will have an appropriate title in the
browser’s title bar. And its main content page is defined by courseDetail.jsp, so
the content component is overridden to be /tiles/courseDetail.jsp.

 So far, this is a typical Tiles-based application. You’ve seen nothing Spring-
specific yet. But now it’s time to integrate Tiles into Spring MVC by performing
these two steps:

■ Configuring a TilesConfigurer to load the Tiles definition file
■ Declaring a Spring MVC view resolver to resolve logical view names to

Tiles definitions

Configuring Tiles
The first step in integrating Tiles into Spring MVC is to tell Spring to load the
Tiles configuration file(s). Spring comes with TilesConfigurer, a bean that
loads Tiles configuration files and makes them available for rendering Tiles
views. To load the Tiles configuration into Spring, declare a TilesConfigurer
instance as follows:

<bean id="tilesConfigurer" class="org.springframework.
 web.servlet.view.tiles.TilesConfigurer">

 <property name="definitions">
 <list>
 <value>/WEB-INF/tiledefs/training-defs.xml</value>
 </list>
 </property>
</bean>

The definitions property is given a list of Tiles definition files to load. But in the
case of the Spring Training application, there’s only one definition file: training-
defs.xml.

Resolving Tiles views
The final step to integrate Tiles into Spring MVC is to configure a view resolver

➥

that will send the user to a page defined by Tiles. InternalResourceViewResolver
will do the trick:

Designing page layout with Tiles 335

<bean id="viewResolver" class="org.springframework.
 web.servlet.view.InternalResourceViewResolver">
 <property name="viewClass">
 <value>org.springframework.web.
 servlet.view.tiles.TilesView</value>
 </property>
</bean>

Normally, InternalResourceViewResolver resolves logical views from resources
(typically JSPs) in the web application. But for Tiles, you’ll need it to resolve views
as definitions in a Tiles definition file. For that, the viewClass property has been
set to use a TilesView.

 There are actually two view classes to choose from when working with Tiles:
TilesView and TilesJstlView. The difference is that TilesJstlView will place
localization information into the request for JSTL pages. Even though we’re using
JSTL, we’re not taking advantage of JSTL’s support for internationalization.
Therefore, we’ve chosen TilesView.

 When InternalResourceViewResolver is configured with TilesView (or
TilesJstlView) it will try to resolve views by looking for a definition in the Tiles
definition file(s) that has a name that is the same as the logical view name. For
example, consider what happens as a result of DisplayCourseController. When
finished, this controller returns the following ModelAndView:

return new ModelAndView("courseDetail", "course", course);

The logical view name is courseDetail, so TilesView will look for the view defi-
nition in the Tiles configuration. In this case, it finds the <definition> named
courseDetail. Since courseDetail is based on template, the resulting HTML
page will be structured like mainTemplate.jsp (listing 9.5), but will have its
title set to Course Detail and its content will be derived from the JSP in /tiles/
courseDetail.jsp.

 Nothing about the Spring Training controller classes will need to change to
support Tiles. That’s because the page definitions in training-defs.xml are cleverly
named to be the same as the logical view names returned by all of the controllers.

9.3.2 Tile controllers

Suppose that you’d like to make the Spring Training application a bit more per-
sonable by placing a greeting in the header for users who are logged in. The mes-

➥

➥

sage will greet students by name and give a count of the number of courses
they’ve completed.

336 CHAPTER 9
View layer alternatives

 One way to accomplish this is to place the following code in each of
the controllers:

Student student =
 (Student) request.getSession().getAttribute("student");
if(student != null) {
 int courseCount =
 studentService.getCompletedCourses(student).size();

 modelMap.add("courseCount", courseCount);
 modelMap.add("studentName", student.getFirstName());
}

This would place the student’s first name and course count into the request so
that it can be displayed in header.jsp like this:

Hello ${studentName}, you have completed ${courseCount} courses.

But for this to work on all pages, you’d need to repeat the student lookup code in
all of the application’s controller classes. There are options to eliminate the
redundant code, including placing the lookup code in a base controller class or in
a utility class. But all of these options add complexity that you’d like to avoid.

 A unique feature of Tiles is that each component on a page can have its own
controller. This is a Tiles-specific controller, not to be confused with a Spring MVC
controller. Component controllers can be associated with Tiles components so
that each component can perform functionality specific to that component.

 To include a personal message on each page of the Spring Training applica-
tion, you will need to build a controller for the header component. HeaderTiles-
Controller (listing 9.6) retrieves the number of courses that the student has
completed and places that information into the component context for display in
the banner.

public class HeaderTileController
 extends ComponentControllerSupport {
 protected void doPerform(ComponentContext componentContext,
 HttpServletRequest request, HttpServletResponse response)
 throws Exception {

 ApplicationContext context = getApplicationContext();

 StudentService studentService =
 (StudentService) context.getBean("studentService");

Listing 9.6 Retrieving course counts using a Tiles controller

Get Spring
application
context

Retrieve student

 Student student =
 (Student) request.getSession().getAttribute("student");

service bean

Generating non-HTML output 337

 int courseCount =
 studentService.getCompletedCourses(student).size();

 componentContext.putAttribute("courseCount",
 new Integer(courseCount));
 componentContext.putAttribute("studentname",
 student.getFirstName());
 }
}

HeaderTileController extends ComponentControllerSupport, a Spring-specific
extension of Tiles’ ControllerSupport class. ComponentControllerSupport makes
the Spring application context available via its getApplicationContext() method.

 HeaderTileController makes a call to getApplicationContext() and uses the
application context to look up a reference to the studentService bean so that it
can find out how many courses the student has completed. Once it has the infor-
mation, it places it into the Tiles component context so that the header compo-
nent can display it.

 The only thing left to do is to associate this component controller with the
header component. Revisiting the header definition in training-defs.xml, extract
the header definition and set its controllerClass attribute to point to the Header-
TileController:

<definition name=".header" page="/tiles/header.jsp"
 controllerClass="com.springinaction.training.
 tiles.HeaderTileController"/>
<definition name="template" page="/tiles/mainTemplate.jsp">
 <put name="title" value="Default title"/>
 <put name="header" value=".header"/>
 <put name="content" value="/tiles/defaultContentPage.jsp"/>
 <put name="footer" value="/tiles/footer.jsp"/>
</definition>

Now, as the page is constructed, Tiles will use HeaderTileController to set up the
component context prior to displaying the header component.

9.4 Generating non-HTML output

Up until now, the views produced by the Spring Training application’s web
HTML-based. Indeed, HTML is the typical way to display infor-

Get course
count

➥

layer have been
mation on the Web. But HTML doesn’t always lend itself to the information
being presented.

338 CHAPTER 9
View layer alternatives

 For example, if the data you are presenting is in tabular format, it may be pref-
erable to present information in the form of a spreadsheet. Spreadsheets may
also be useful if you want to enable the users of your application to manipulate
the data being presented.

 Or perhaps you’d like precise control over how a document is formatted. For-
matting HTML documents precisely is virtually impossible, especially when
viewed across various browser implementations. But Adobe’s Portable Document
Format (PDF) has become the de facto standard for producing documents with
precise formatting that are viewable on many different platforms.

 Spreadsheets and PDF files are commonly static files. But Spring provides view
classes that enable you to dynamically create spreadsheets and PDF documents
that are based on your application’s data.

 Let’s explore Spring’s support for non-HTML views, starting with dynamic
generation of Excel spreadsheets.

9.4.1 Producing Excel spreadsheets
Let’s say that Spring Training’s course director has asked you to produce a
spreadsheet that is a report of all of the courses, including the number of students
enrolled in each course. This could end up being a report that she requests often.
So you decide to automatically generate it and make it available upon request on
the Web so that she can pull it down anytime she wants.

 As you’ll recall, we’ve already built ListCourseController (listing 8.1), which
retrieves a list of courses and sends them to the view named courseList for ren-
dering. In chapter 8, we assumed that the courseList view was a JSP. But, in fact,
there is nothing about ListCourseController that specifically states that
courseList is associated with a JSP. This means that all we need to do is to associ-
ate courseList to a view that produces Excel spreadsheets.

 You’re in luck. Spring comes with org.springframework.web.servlet.view.
document.AbstractExcelView, an abstract View implementation that is geared
toward generating Excel spreadsheets as views in Spring MVC. All you need to do
is subclass AbstractExcelView and implement its buildExcelDocument() method.
Listing 9.7 shows CourseListExcelView, a subclass of AbstractExcelView that gen-
erates a course listing as an Excel spreadsheet.

Listing 9.7 A view that generates a spreadsheet listing of courses
public class CourseListExcelView extends AbstractExcelView {
 protected void buildExcelDocument(Map model, HSSFWorkbook wb,
 HttpServletRequest request, HttpServletResponse response)
 throws Exception {

Generating non-HTML output 339

 Set courses = (Set) model.get("courses");

 HSSFSheet sheet = wb.createSheet("Courses");
 HSSFRow header = sheet.createRow(0);
 header.createCell((short)0).setCellValue("ID");
 header.createCell((short)1).setCellValue("Name");
 header.createCell((short)2).setCellValue("Instructor");
 header.createCell((short)3).setCellValue("Start Date");
 header.createCell((short)4).setCellValue("End Date");
 header.createCell((short)5).setCellValue("Students");

 HSSFCellStyle cellStyle = wb.createCellStyle();
 cellStyle.setDataFormat(
 HSSFDataFormat.getBuiltinFormat("m/d/yy h:mm"));

 int rowNum = 1;
 for (Iterator iter = courses.iterator(); iter.hasNext();) {
 Course course = (Course) iter.next();

 HSSFRow row = sheet.createRow(rowNum++);
 row.createCell((short)0).setCellValue(
 course.getId().toString());
 row.createCell((short)1).setCellValue(course.getName());
 row.createCell((short)2).setCellValue(
 course.getInstructor().getLastName());
 row.createCell((short)3).setCellValue(course.getStartDate());
 row.getCell((short)3).setCellStyle(cellStyle);
 row.createCell((short)4).setCellValue(course.getEndDate());
 row.getCell((short)4).setCellStyle(cellStyle);
 row.createCell((short)5).setCellValue(
 course.getStudents().size());
 }

 HSSFRow row = sheet.createRow(rowNum);
 row.createCell((short)0).setCellValue("TOTAL:");
 String formula = "SUM(F2:F"+rowNum+")";
 row.createCell((short)5).setCellFormula(formula);
 }
}

AbstractExcelView is based on Jakarta POI (http://jakarta.apache.org/poi), an API
for generating many of the documents supported by Microsoft Office applica-
tions, including Excel spreadsheets. The buildExcelDocument() method takes a
java.util.Map, which contains any model objects needed to construct the view
and an empty HSSFWorkbook2 to build the spreadsheet in.

Get courses from model
2 In case you’re wondering, the “HSSF” in POI’s class names is an acronym for “Horrible SpreadSheet
Format.”

340 CHAPTER 9
View layer alternatives

 CourseListExcelView starts by retrieving a Set of course objects from the
model Map. It then uses the data in the course Set to construct the spreadsheet.

 If you’ve ever used servlets or a servlet-based framework to generate spread-
sheets (or any non-HTML content), you know that you have to set the response’s
content type so that the browser knows how to display the document. For Excel
spreadsheets, you would probably set the content type like this:

response.setContentType("application/vnd.ms-excel");

But using CourseListExcelView, you don’t have to worry about setting the content
type. CourseListExcelView’s default constructor takes care of this for you.

 The only thing left to do is to associate CourseListExcelView with a logical
view name of courseList. The simplest way to do this is to use a BeanNameView-
Resolver (see section 8.4.2) and declare the CourseListExcelView bean to have
courseList as its id:

<bean id="courseList"
 class="com.springinaction.training.mvc.CourseListExcelView"/>

Another way is to use ResourceBundleViewResolver. In this case, you would asso-
ciate CourseListExcelView with a logical name of courseList by placing the fol-
lowing line in the views.properties file:

courseList.class=com.springinaction.training.mvc.CourseListExcelView

Remember that there’s nothing about ListCourseController that is specific to
generating spreadsheets. The View object is entirely responsible for determining
the type of document that is produced. The controller class is completely decou-
pled from the view mechanism that will be used to render the output. This is
important, because it means that you could plug in a different View object to gen-
erate a different type of document. In fact, that’s what we’ll do next—wire a dif-
ferent View into ListCourseController to generate the course listing in a PDF file.

9.4.2 Generating PDF documents

Suppose that, instead of an Excel spreadsheet, you need to generate a PDF file
that lists courses. Just as you did to generate a spreadsheet, the first thing you’ll
need to do is to create a View implementation that generates the PDF document.

 Spring’s org.springframework.web.servlet.view.document.AbstractPdfView
is an abstract implementation of View that supports the creation of PDF files as

views in Spring MVC. Much as with AbstractExcelView, you’ll need to subclass
AbstractPdfView and implement the buildPdfDocument() method to construct a
PDF document.

Generating non-HTML output 341

 CourseListPdfView (listing 9.8) is a subclass of AbstractPdfView that generates
a PDF document that has a table listing courses.

public class CourseListPdfView extends AbstractPdfView {
 protected void buildPdfDocument(Map model, Document pdfDoc,
 PdfWriter writer, HttpServletRequest request,
 HttpServletResponse response) throws Exception {

 Set courseList = (Set) model.get("courses");

 Table courseTable = new Table(5);
 CourseTable.setWidth(90);
 courseTable.setBorderWidth(1);

 courseTable.addCell("ID");
 courseTable.addCell("Name");
 courseTable.addCell("Instructor");
 courseTable.addCell("Start Date");
 courseTable.addCell("EndDate");

 for (Iterator iter = courseList.iterator(); iter.hasNext();) {
 Course course = (Course) iter.next();

 courseTable.addCell(course.getId().toString());
 courseTable.addCell(course.getName());
 courseTable.addCell(course.getInstructor().getLastName());
 courseTable.addCell(course.getStartDate().toString());
 courseTable.addCell(course.getEndDate().toString());
 }

 pdfDoc.add(courseTable);
 }
}

The buildPdfDocument() method is where the PDF document is created. Among
other parameters, this method takes a java.util.Map and a com.lowagie.
text.Document. Just as with buildExcelDocument() in AbstractExcelView, the Map
passed to buildPdfDocument() contains model data that can be used to generate
the view.

 AbstractPdfView is based on iText, an API for manipulating PDF documents.
The Document object passed into buildPdfDocument() is an empty iText docu-

Listing 9.8 Generating a PDF document view

Get course list

Add table to document
ment, ready to be filled with content. (For more information about iText, visit the
iText home page at http://www.lowagie.com/iText.)

342 CHAPTER 9
View layer alternatives

 In CourseListPdfView, the buildPdfDocument() method starts by retrieving the
courses from the model Map. It then constructs a table with one row per course.
Once the table is constructed, it is added to the Document.

 Just like AbstractExcelView, AbstractPdfView handles setting the content type
for you (in this case, the content type will be set to application/pdf).

 Next you must associate CourseListPdfView with a logical view name of
courseList. Just as with CourseListExcelView, you have two options. The easiest
approach would be to use a BeanNameViewResolver and declare a CourseListPdf-
View bean in the context configuration file as follows:

<bean id="courseList"
 class="com.springinaction.training.mvc.CourseListPdfView"/>

Or you could use a ResourceBundleViewResolver, declaring the view in
views.properties as follows:

courseList.class=com.springinaction.training.mvc.CourseListPdfView

Altering the page size
By default, the Document object passed into the buildPdfDocument() method is
configured to be sized A4 (210 x 297mm) with portrait orientation. But you may
want to override that by specifying a different size or orientation. To do so, you
should override the getDocument() method of AbstractPdfView to return a Document
object of your choosing.

 For example, the following implementation of getDocument() returns a Document
object that uses legal-sized (216 x 356mm) pages:

protected Document getDocument() {
 return new Document(PageSize.LEGAL);
}

To switch a page’s orientation from portrait to landscape, all you must do is call
the rotate() method on the PageSize object. For example, use this code to switch
the legal-sized document from portrait to landscape:

protected Document getDocument() {
 return new Document(PageSize.LEGAL.rotate());
}

Now you know how to produce Excel and PDF documents using the custom View
implementations that come with Spring. But what if your application requires a
different type of document not directly supported by Spring?

Generating non-HTML output 343

9.4.3 Generating other non-HTML files

Both AbstractExcelView and AbstractPdfView implement the View interface. But
if spreadsheets and PDF documents aren’t what you need, then you can create
your own implementation of the View interface.

 The View interface requires that you only implement a single method, the ren-
der() method. This method has the following signature:

void render(Map model,
 HttpServletRequest request,
 HttpServletResponse response) throws Exception;

Let’s suppose that your application needs to dynamically produce graphs in the
form of JPEG images. Since you’ll probably end up creating several different
JPEGs, it would be wise to create an abstract implementation of View that encap-
sulates all of the code that is common to all JPEG rendering views. Listing 9.9
shows AbstractJpegView, an abstract JPEG rendering View that follows the same
style as AbstractPdfView and AbstractExcelView.

public abstract class AbstractJpegView implements View {
 public AbstractJpegView() {}

 public int getImageWidth() { return 100; }

 public int getImageHeight() { return 100; }

 protected int getImageType() {
 return BufferedImage.TYPE_INT_RGB;
 }

 public void render(Map model, HttpServletRequest request,
 HttpServletResponse response) throws Exception {

 response.setContentType("image/jpeg");

 BufferedImage image = new BufferedImage(
 getImageWidth(), getImageHeight(), getImageType());

 buildImage(model, image, request, response);

 ServletOutputStream out = response.getOutputStream();
 JPEGImageEncoder encoder = new JPEGImageEncoderImpl(out);
 encoder.encode(image);

Listing 9.9 An abstract view for rendering JPEG images

Set content type

Create buffered
image

Draw image

Encode
JPEG
 out.flush();
 }

344 CHAPTER 9
View layer alternatives

 protected abstract void buildImage(Map model, BufferedImage image,
 HttpServletRequest request, HttpServletResponse response)
 throws Exception;
}

To use AbstractJpegView, you must extend it and implement the buildImage()
method. For example, if you simply want to render a circle, then CircleJpegView
(listing 9.10) will do the trick.

public class CircleJpegView extends AbstractJpegView {
 public CircleJpegView() {}

 protected void buildImage(Map model, BufferedImage image,
 HttpServletRequest request, HttpServletResponse response)
 throws Exception {

 Graphics g = image.getGraphics();
 g.drawOval(0,0,getImageWidth(), getImageHeight());
 }
}

We’ll leave it up to you to find more interesting images to be drawn by extending
AbstractJpegView. Perhaps CircleJpegView will give you a decent start toward
drawing a pie graph.

9.5 Summary

Although JSP is the likely choice for generating views in a Spring MVC applica-
tion, it is not the only choice. By swapping out view resolvers and view implemen-
tations, your application can produce web pages using alternative view layer
technologies or even produce non-HTML output.

 In this chapter, you learned to replace JSP with Velocity or FreeMarker in your
Spring MVC applications. In a similar manner, you saw how to integrate Jakarta
Tiles into your Spring MVC application to lay out your application’s presentation
to be more usable and visually pleasing.

Listing 9.10 A circle-drawing view

Draw a circle
 Finally, you saw how to create custom view implementations that produce
dynamically generated binary content such as Excel spreadsheets, PDF docu-
ments, and images.

Summary 345

 While this chapter offered you several choices for an application’s view layer,
everything you saw worked within a Spring MVC application. But what if you have
another MVC framework that you prefer?

 In the next chapter, we’ll extend the set of choices to other MVC frameworks so
that you can use Spring along with your MVC framework of choice.

Working with
other web frameworks
This chapter covers
■ Using Spring with Jakarta Struts
■ Integrating with Tapestry
■ Working with JavaServer Faces
■ Integrating with WebWork
346

Working with Jakarta Struts 347

Up until this point, we’ve been assuming that you’ll be using Spring’s MVC frame-
work to drive the web layer of your application. While we believe that Spring’s MVC
is a strong choice, there may be reasons why you prefer another framework. Perhaps
you’re already heavily invested in another MVC framework and aren’t prepared to
abandon your familiar MVC framework for Spring. Nevertheless, you would like
to use Spring in the other layers of your application to take advantage of its support
for declarative transactions, AOP, and inversion of control.

 If you’re not quite ready to make the jump to Spring’s MVC, then you certainly
have a huge selection of other MVC frameworks to choose from. In fact, there is a
blog1 that lists over 50 such frameworks! We have neither the space nor the incli-
nation to show you how to integrate Spring with all of them. But we will show you
how to integrate Spring into some of the more popular MVC frameworks, includ-
ing Tapestry and JavaServer Faces. Let’s start with the archetypal MVC frame-
work—Jakarta Struts.

10.1 Working with Jakarta Struts

Despite the seemingly endless barrage of Java-based MVC frameworks, Jakarta
Struts is still the king of them all. It began life in May 2000 when Craig McClana-
han launched the project to create a standard MVC framework for the Java com-
munity. In July 2001, Struts 1.0 was released and set the stage for Java web
development for thousands and thousands of projects.

 Suppose that you had written the Spring Training application using Struts in
the web layer. Had that been the case, you would have written ListCourseAction
(listing 10.1) instead of ListCourseController.

public class ListCourseAction extends Action {
 private CourseService courseService;

 public ActionForward execute(
 ActionMapping mapping,
 ActionForm form,
 HttpServletRequest request,
 HttpServletResponse response) throws Exception {

 Set allCourses = courseService.getAllCourses();

Listing 10.1 A Struts action that lists courses
1 http://www.manageability.org/blog/stuff/how-many-java-web-frameworks/view

348 CHAPTER 10
Working with other web frameworks

 request.setAttribute("courses", allCourses);

 return mapping.findForward("courseList");
 }
}

Just as with ListCourseController, this action uses a CourseService to get a list of
all courses. What’s missing in listing 10.1 is the part that tells where the Course-
Service comes from. How can a Struts action get references to beans that are con-
tained in a Spring context?

 Spring offers two types of Struts integration that answer that question:

1 Writing Struts actions that extend a Spring-aware base class

2 Delegating requests to Struts actions that are managed as Spring beans

You’ll learn how to use each of these Struts integration strategies in the sec-
tions that follow. But first, regardless of which approach you take, there’s one
bit of configuration that you’ll need to take care of: telling Struts about your
Spring context.

10.1.1 Registering the Spring plug-in

In order for Struts to have access to Spring-managed beans, you’ll need to regis-
ter a Struts plug-in that is aware of the Spring application context. Add the fol-
lowing code to your struts-config.xml to register the plug-in:

<plug-in
 className="org.springframework.web.struts.ContextLoaderPlugIn">
 <set-property property="contextConfigLocation"
 value="/WEB-INF/training-servlet.xml,/WEB-INF/…"/>
</plug-in>

ContextLoaderPlugIn loads a Spring application context (a WebApplication-
Context, to be specific), using the context configuration files listed (comma-
separated) in its contextConfigLocation property.

 Now that the plug-in is in place, you’re ready to choose an integration strategy.
Let’s first look at how to create Struts actions that are aware of the Spring appli-
cation context.

10.1.2 Implementing Spring-aware Struts actions
One way to integrate Struts and Spring is to write all of your Struts action classes
to extend a common base class that has access to the Spring application context.

Working with Jakarta Struts 349

 The good news is that you won’t have to write this Spring-aware base action class
because Spring comes with org.springframework.web.struts.ActionSupport, an
abstract implementation of the org.apache.struts.action.Action that overrides
the setServlet() method to retrieve the WebApplicationContext from the Context-
LoaderPlugIn. Then, anytime your action needs to access a bean from the Spring
context, it just needs to call the getBean() method.

 For example, consider the updated version of ListCourseAction in
listing 10.2. This version extends ActionSupport so that it has access to the Spring
application context.

public class ListCourseAction extends ActionSupport {
 public ActionForward execute(
 ActionMapping mapping,
 ActionForm form,
 HttpServletRequest request,
 HttpServletResponse response) throws Exception {

 ApplicationContext context =
 getWebApplicationContext();

 CourseService courseService =
 (CourseService) context.getBean("courseService");

 Set allCourses = courseService.getAllCourses();

 request.setAttribute("courses", allCourses);

 return mapping.findForward("courseList");
 }
}

When ListCourseAction needs a CourseService, it starts by calling getWebAppli-
cationContext() to get a reference to the Spring application context. Then it calls
the getBean() method to retrieve a reference to the Spring-managed course-
Service bean.

 The good thing about using this approach to Struts-Spring integration is that
it’s very intuitive. Aside from extending ActionSupport and retrieving beans from
the application context, you are able to write and configure your Struts actions in

Listing 10.2 A Struts action that lists courses

Get Spring context

Get courseService
bean
much the same way as you would in a non-Spring Struts application.
 But this approach also has its negative side. Most notably, your action classes

will directly use Spring-specific classes. This tightly couples your Struts action

350 CHAPTER 10
Working with other web frameworks

code with Spring, which may not be desirable. Also, the action class is responsible
for looking up references to Spring-managed beans. This is in direct opposition
to the notion of inversion of control (IoC).

 For those reasons, there’s another way to integrate Struts and Spring that lets
you write Struts action classes that aren’t aware they are integrated with Spring.
And you can use Spring’s IoC support to inject service beans into your actions so
that they don’t have to look them up for themselves.

10.1.3 Delegating actions

Another approach to Struts-Spring integration is to write a Struts action that is
nothing more than a proxy to the real Struts action that is contained in the Spring
application context. The proxy action will retrieve the application context from
the ContextLoaderPlugIn, look up the real Struts action from the context, then
delegate responsibility to the real Struts action.

 One nice thing about this approach is that the only action that does any-
thing Spring-specific is the proxy action. The real actions can be written as just
plain subclasses of org.apache.struts.Action. Listing 10.3 shows yet another
version of ListCourseAction that is implemented as a plain Spring-ignorant
Struts action.

public class ListCourseAction extends Action {
 public ActionForward execute(
 ActionMapping mapping,
 ActionForm form,
 HttpServletRequest request,
 HttpServletResponse response) throws Exception {

 Set allCourses = courseService.getAllCourses();

 request.setAttribute("courses", allCourses);

 return mapping.findForward("courseList");
 }

 private CourseService courseService;
 public void setCourseService(CourseService courseService) {
 this.courseService = courseService;
 }
}

Listing 10.3 A Struts action that lists courses

Inject
CourseService

Working with Jakarta Struts 351

Normally at this point, you’d register this Struts action in struts-config.xml. But
instead, we’re going to register the proxy action. Fortunately, you won’t have to
write the proxy action yourself because Spring provides one for you in the
org.springframework.web.struts.DelegatingActionProxy class. All you’ll need to
do is set this action up in struts-config.xml:

<action path="/listCourses"
 type="org.springframework.web.struts.DelegatingActionProxy"/>

But what of ListCourseAction? Where does it get registered?

Wiring Actions as Spring beans
Oddly enough, you don’t need to register ListCourseAction in struts-config.xml.
Instead, you register it as a bean in your Spring context configuration file:

<bean name="/listCourses"
 class="com.springinaction.training.struts.ListCourseAction">
 <property name="courseService">
 <ref bean="courseService"/>
 </property>
</bean>

Here the bean is named using the name attribute instead of the id attribute. That’s
because XML places restrictions on what characters can appear in an id attribute
and the slash (/) is invalid. The value of the name attribute is very important. It
must exactly match the path attribute of the <action> in struts-config.xml. That’s
because DelegatingActionProxy will use the value of the path attribute to look up
the real action in the Spring context. (This is reminiscent of how you would name
beans using BeanNameUrlHandlerMapping; see chapter 8.)

 You may have noticed that the newest ListCourseAction gets a reference to a
CourseService through setter injection. As far as Spring is concerned, it is just
another bean. Therefore, you can use Spring’s IoC to wire service beans into the
Struts action.

 The benefit of using DelegatingActionProxy is that you are able to write Struts
actions that don’t use any Spring-specific classes. Also, your Struts actions can
take advantage of IoC to obtain references to their collaborating objects.

 The only bad thing about this approach is that it’s not entirely intuitive. A
quick look at the struts-config.xml file may confuse someone who’s not used to
this approach because it appears that all paths are mapped to the same action
class (in fact, they are).

352 CHAPTER 10
Working with other web frameworks

Using request delegation
To make action delegation slightly more intuitive, Spring provides Delegating-
RequestProcessor, a replacement request processor for Spring. To use it, place
the following in your struts-config.xml:

<controller processorClass=
 "org.springframework.web.struts.DelegatingRequestProcessor"/>

Or, if you are using Tiles with Struts:

<controller processorClass="org.springframework.web.
 struts.DelegatingTilesRequestProcessor"/>

DelegatingRequestProcessor (or DelegatingTilesRequestProcessor) tells Struts
to automatically delegate action requests to Struts actions in a Spring context.
This enables you to declare your Struts actions in struts-config.xml with their real
type. For example:

<action path="/listCourses"
 type="com.springinaction.training.struts.ListCourseAction"/>

When a request is received for /listCourses, DelegatingRequestProcessor will
automatically refer to the Spring application context, looking for a bean named
/listCourses (which is presumed to be a Struts action class).

 As it turns out, the type attribute is ignored completely. This means you can
declare your Struts actions in shorthand as follows:

<action path="/listCourses"/>

Although it’s optional, you may still choose to set the type attribute so that it’s
clear which action is mapped to the path.

 Struts was among the first of the MVC frameworks for Java and set the stage
for many of the frameworks that followed. But it was only the beginning.

10.2 Working with Tapestry

Tapestry is another MVC framework for the Java platform that is gathering a
large following. One of the most appealing features of Tapestry is that it uses
plain HTML as its template language.

 While it may seem peculiar that Tapestry uses a static markup language to
drive dynamically created content, it’s actually a very practical approach. Tapes-
try components are placed within an HTML page using any HTML tag you want to

➥

use (is often the tag of choice for Tapestry components). The HTML tag is
given a jwcid attribute, which references a Tapestry component definition. For
example, consider the following simple Tapestry page:

Working with Tapestry 353

<html>
 <head><title>Simple page</title></head>
 <body>
 <h2>Simple header</h2>
 </body>
</html>

When Tapestry sees the jwcid attribute, it will replace the tag (and its con-
tent) with the HTML produced by the simpleHeader component. The nice thing
about this approach is that page designers and Tapestry developers alike can eas-
ily understand this HTML template. And even without being processed by the
Tapestry engine, it loads cleanly into any HTML design tool or browser.

 In this section, we’re going to replace Tapestry’s default engine with a Spring-
aware engine so that Tapestry pages and components can have access to service
beans that are managed by Spring. We’re going to assume that you are already
familiar with Tapestry. If you need to learn more about Tapestry, we recommend
Tapestry in Action by Howard Lewis Ship (the creator of Tapestry).

10.2.1 Replacing the Tapestry Engine

Tapestry’s engine maintains an object (known as global) that is a simple con-
tainer for any objects you want shared among all Tapestry sessions. It is a
java.util.HashMap by default.

 The key strategy behind Tapestry-Spring integration is loading a Spring appli-
cation context into Tapestry’s global object. Once it’s in global, all pages can
have access to Spring-managed beans by retrieving the context from global and
calling getBean().

 To load a Spring application context into Tapestry’s global object, you’ll need
to replace Tapestry’s default engine (org.apache.tapestry.engine.BaseEngine)
with a custom engine. Unfortunately, the latest version of Spring that was avail-
able while we were writing this does not come with a replacement Tapestry
engine. This leaves it up to you to write it yourself (even though it’s virtually the
same for any Spring/Tapestry hybrid application).

 SpringTapestryEngine (listing 10.4) extends BaseEngine to load a Spring
application context into the Tapestry global property.

package com.springinaction.tapestry;

Listing 10.4 A replacement Tapestry engine that loads a Spring context into global
import javax.servlet.ServletContext;
import org.apache.tapestry.engine.BaseEngine;
import org.apache.tapestry.request.RequestContext;

354 CHAPTER 10
Working with other web frameworks

import org.springframework.context.ApplicationContext;
import org.springframework.web.context.support.
 WebApplicationContextUtils;

public class SpringTapestryEngine extends BaseEngine {
 private static final String SPRING_CONTEXT_KEY = "springContext";

 protected void setupForRequest(RequestContext context) {
 super.setupForRequest(context);

 Map global = (Map) getGlobal();

 ApplicationContext appContext =
 (ApplicationContext)
 global.get(SPRING_CONTEXT_KEY);

 if (appContext == null) {
 ServletContext servletContext =
 context.getServlet().getServletContext();
 appContext = WebApplicationContextUtils.
 getWebApplicationContext(servletContext);

 global.put(SPRING_CONTEXT_KEY, appContext);
 }
 }
}

SpringTapestryEngine first checks global to see if the Spring context has already
been loaded. If so, then there is nothing to do. But if global doesn’t already have
a reference to the Spring application context, it will use WebApplicationContext-
Utils to retrieve a web application context. It then places the application context
into global for later use.

 Because SpringTapestryEngine uses WebApplicationContextUtils to look up
the application context, you’ll need to be sure to load the context into your web
application’s servlet context using either ContextLoaderServlet or ContextLoader-
Listener. The following <listener> block in web.xml uses ContextLoaderListener
to load the application context:

<listener>
 <listener-class>org.springframework.web.
 context.ContextLoaderListener</listener-class>
</listener>

➥

Check for Spring context

Load
context

➥

Note that there is one limitation of SpringTapestryEngine as it is written. It
assumes that the global object is a java.util.Map object. This is usually not a

Working with Tapestry 355

problem as Tapestry defaults global to be a java.util.HashMap. But if your appli-
cation has changed this by setting the org.apache.tapestry.global-class prop-
erty, SpringTapestryEngine will need to change accordingly.

 The last thing to do is to substitute the default Tapestry engine with Spring-
TapestryEngine. This is accomplished by configuring the engine-class attribute
of your Tapestry application:

<application name="Spring Training"
 engine-class="com.springinaction.tapestry.SpringTapestryEngine">
…
</application>

At this point, the Spring application context is available in Tapestry’s global
object ready to be used to dispense Spring-managed service beans. Let’s take a
look at how to wire those service beans into a Tapestry page specification.

10.2.2 Loading Spring beans into Tapestry pages
Suppose that you’re implementing the course detail page from the Spring Train-
ing application as a Tapestry page. In doing so, you would need to create a page
specification file for the course detail page and a page specification class that per-
forms the logic behind the page.

 The page specification class will need to retrieve course information using the
courseService bean from Spring. Listing 10.5 shows an excerpt from Course-
DetailPage.

public abstract class CourseDetailPage extends BasePage {
 public abstract CourseService getCourseService();

 private Course course;
 public Course getCourse() { return course; }

 public void displayCourse(int courseId, IRequestCycle cycle) {
 CourseService courseService = getCourseService();

 course = courseService.getCourse(courseId);

 cycle.activate(this);
 }
}

Listing 10.5 A course detail page, à la Tapestry

Look up course

Make this current page
When the displayCourse() method is called (perhaps as the result of clicking on a
link from a course listing page), it first calls the getCourseService() method to

356 CHAPTER 10
Working with other web frameworks

retrieve a reference to the courseService bean. It then proceeds to use the Course-
Service object to retrieve a Course object.

 The big question to ask is where does the CourseService come from? The get-
CourseService() method is abstract, so presumably something will implement
this method. But how will that happen?

 The page’s specification file clears this up a bit:
<page-specification
 class="com.springinaction.training.tapestry.CourseDetailPage">
 <property-specification name="courseService"
 type="com.springinaction.training.service.CourseService">
 global.springContext.getBean("courseService")
 </property-specification>
…
</page-specification>

Here, the <property-specification> element performs a type of injection. When
Tapestry loads the application, it will extend CourseDetailPage, implementing
the getCourseService() method to retrieve the courseService bean from the
Spring application context (which was placed into Tapestry’s global object by
SpringTapestryEngine).

 To complete the story of the course detail page, the following excerpt from
courseDetail.html shows how the template uses Object Graph Navigation Lan-
guage (OGNL) to display course information from the Course object:

<h2>
 Some Course
</h2>
ID:
 00000

Instructor:
 <span jwcid="@Insert"
 value="ognl:course.instructor.firstName + ' ' +
 course.instructor.lastName">
 Jim Smith

Starts:

 Start Date

Ends:

 End Date

 Description

Integrating with JavaServer Faces 357

Although this example shows how to use Spring beans from within a Tapestry
page specification, the same technique can be applied to a Tapestry compo-
nent specification.

 Tapestry is gathering a huge following, largely due to its use of HTML as a
template language and its event-driven approach to handling interaction
between the user interface and the application. Another event-driven approach
to MVC is found in the JavaServer Faces specification. The final MVC framework
we’ll integrate with Spring will be JavaServer Faces.

10.3 Integrating with JavaServer Faces

JavaServer Faces (JSF) may be a newcomer in the space of Java web frameworks,
but it has a long history. First announced at JavaOne in 2001, the JSF specification
made grand promises of extending the component-driven nature of Swing and
AWT user interfaces to web frameworks. The JSF team produced virtually no
results for a very long time, leaving some (including us) to believe it was vapor-
ware. Then in 2002, Craig McClanahan (the original creator of Jakarta Struts)
joined the JSF team as the specification lead and everything turned around.

 After a long wait, the JSF 1.0 specification was released in February 2004 and
was quickly followed by the maintenance 1.1 specification in May 2004. At this
time JSF has a lot of momentum and is capturing the attention of Java developers.

 In a nutshell, JSF-Spring integration makes Spring-managed beans visible as
variables to JSF (as if the Spring beans are configured as JSF-managed beans).
We’re going to assume that you are already familiar with JSF. If you want to know
more about JSF, we recommend that you have a look at Kito D. Mann’s JavaServer
Faces in Action (Manning, 2004).

10.3.1 Resolving variables

Imagine that long before you ever heard of Spring, you had already developed
the Spring Training application using JSF to develop the web layer. As part of the
application, you have created a form that is used to register new students.

 The following excerpt from the JSF-enabled registerStudent.jsp file shows how
JSF binds a Student object to fields in the form:

<h:form>
 <h2>Create Student</h2>

 <h:panelGrid columns="2">
 <f:verbatim>Login:</f:verbatim>
 <h:inputText value="#{student.login}" required="true"/>

358 CHAPTER 10
Working with other web frameworks

 <f:verbatim>Password:</f:verbatim>
 <h:inputText value="#{student.password}" required="true"/>

 <f:verbatim>First Name:</f:verbatim>
 <h:inputText value="#{student.firstName}" required="true"/>

 <f:verbatim>Last Name:</f:verbatim>
 <h:inputText value="#{student.lastName}" required="true"/>
….
 </h:panelGrid>
 <h:commandButton id="submit" action="#{student.enroll}"
 value="Enroll Student"/>
</h:form>

Notice that the action parameter of the <h:commandButton> is set to #{student.
enroll}. Unlike many other MVC frameworks (including Spring’s MVC), JSF doesn’t
use a separate controller object to process form submissions. Instead, JSF passes
control to a method in the model bean. In this case, when the form is submitted
JSF will call the enroll() method of the student bean to process the form. The
enroll() method is defined as follows:

public String enroll() {
 try {
 studentService.enrollStudent(this);
 } catch (Exception e) {
 return "error";
 }

 return "success";
}

To keep the Student bean as simple as possible, the enroll() method simply del-
egates responsibility to the enrollStudent() method of a StudentService bean.
So, where does the studentService property get set?

 To find the answer to that question, consider the following declaration of the
student bean in faces-config.xml:

<managed-bean>
 <managed-bean-name>student</managed-bean-name>
 <managed-bean-class>
 com.springinaction.training.model.Student
 </managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
 <managed-property>
 <property-name>studentService</property-name>

 <value>#{studentService}</value>
 </managed-property>
</managed-bean>

Integrating with JavaServer Faces 359

Here the student bean is declared as a request-scoped JSF-managed bean. But
take note of the <managed-property> element. JSF supports a simple implementa-
tion of setter injection. #{studentService} indicates that the studentService
property is being given a reference to a bean named studentService.

 As for the studentService bean, you have declared it as a JSF-managed bean
as follows:

<managed-bean>
 <managed-bean-name>studentService</managed-bean-name>
 <managed-bean-class>
 com.springinaction.training.service.StudentServiceImpl
 </managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
 <managed-property>
 <property-name>studentDao</property-name>
 <value>#{studentDao}</value>
 </managed-property>
</managed-bean>

Dependency injection is employed again in the studentService bean wiring in a
StudentDao bean to the studentDao property of studentService. And if you were
to examine the declaration of the studentDao bean, you’d find it is injected with a
javax.sql.DataSource, which itself is also declared as a JSF-managed bean.

 Seeing how JSF supports dependency injection, you may be wondering why
you would ever want to integrate Spring into your JSF application. It’s true
that JSF’s support for setter injection is not too different from that of Spring’s.
But remember that Spring offers more than just simple IoC. In particular,
Spring’s declarative transaction support may come in handy with the student-
Service bean.

 Furthermore, even though JSF is a presentation layer framework, you are
declaring service- and data access-layer components in its configuration file. This
seems somewhat inappropriate and it would be better to separate the layers,
allowing JSF to handle presentation stuff and Spring handle the rest.

Resolving Spring beans
JSF uses a variable resolver to locate beans that are managed within the JSF appli-
cation. The JSF-Spring project (a separate project from Spring) provides a
replacement variable resolver, FacesSpringVariableResolver, that resolves vari-
ables from both faces-config.xml and a Spring application context. You can down-

load the JSF-Spring integration package from the project’s web site at http://jsf-
spring.sourceforge.net. We’ll be using JSF-Spring version 2.5 to develop the JSF
version of the Spring Training application.

360 CHAPTER 10
Working with other web frameworks

 To substitute the default variable resolver with FacesSpringVariableResolver,
place the following <variable-resolver> element in the <application> block of
faces-config.xml, as follows:

<application>
 …
 <variable-resolver>
 de.mindmatters.faces.spring.FacesSpringVariableResolver
 </variable-resolver>
</application>

For FacesSpringVariableResolver to be able to resolve Spring-managed beans,
you’ll also need a ContextLoaderListener configured in your application’s
web.xml file to load the Spring application context:

<listener>
 <listener-class>org.springframework.web.
 context.ContextLoaderListener</listener-class>
</listener>

By default, ContextLoaderListener will load the Spring context configuration file
from /WEB-INF/applicationContext.xml. If you have your Spring context defined
in a different file, perhaps /WEB-INF/applicationContext-hibernate.xml, then
you’ll want to add the following servlet context parameter to web.xml:

<context-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>/WEB-INF/applicationContext-hibernate.xml</param-value>
</context-param>

With FacesSpringVariableResolver in place and the application context loaded,
you are now ready to wire your service and data access layer beans in Spring.

Using Spring beans

FacesSpringVariableResolver makes the resolving of Spring-managed beans
transparent in JSF. To illustrate, recall that the student bean is injected with a ref-
erence to the studentService bean with the following <managed-property> decla-
ration in faces-config.xml:

<managed-property>
 <property-name>studentService</property-name>
 <value>#{studentService}</value>
</managed-property>

➥

Even though the studentService bean is now going to reside in a Spring context,
nothing needs to change about the existing declaration of the student bean.

Integrating with JavaServer Faces 361

When it comes time to inject the studentService property of the student bean, it
asks FacesSpringVariableResolver for the reference to the studentService bean.
FacesSpringVariableResolver will first look in the JSF configuration for the
bean. When it can’t find it, it will then look in the Spring application context.

 But it will only find the studentService bean in the Spring context if you
declare it there. So, instead of registering it as a <managed-bean> in faces-
config.xml, place it in the Spring context definition file as follows:

<bean id="studentService"
 class="com.springinaction.training.service.StudentServiceImpl">
 <constructor-arg><ref bean="studentDao"/></constructor-arg>
</bean>

Notice that this declaration of studentService is no different than how it would
be declared in an application that uses Spring MVC. In fact, from the service layer
to the data access layer, you will declare your application beans in the Spring
application context exactly the same as you would if your application were
fronted by Spring MVC. FacesSpringVariableResolver will find them as though
they are part of the JSF configuration.

 Resolving Spring beans as JSF variables is the key part of JSF-Spring integra-
tion. But there’s one more loose end to tie up with regard to JSF-fronted Spring
applications: publishing RequestHandledEvents.

10.3.2 Publishing request handled events
Sometimes it is necessary for your application to know when a servlet request has
been handled. Maybe some postprocessing needs to take place or you have to
perform some cleanup once the request is complete.

 In a Spring MVC application, DispatcherServlet publishes a RequestHandled-
Event after the request has been handled. Any bean that implements the
ApplicationListener interface will be given a chance to react to this event.

 For example, one of the tidbits of information contained in a RequestHandled-
Event is how long the request took to process (in milliseconds). Spring comes with
PerformanceMonitorListener, a bean that listens for RequestHandledEvent and
logs the processing time for the request.

<bean id="performanceListener" class="org.springframework.
 web.context.support.PerformanceMonitorListener"/>

Your application may also have custom beans that implement ActionListener. They
➥

will also receive a RequestHandledEvent whenever a servlet request is completed.
 But that’s what happens if your application’s web layer is based on Spring MVC. If

you’re using JSF, the JSF implementation won’t know to fire a RequestHandledEvent.

362 CHAPTER 10
Working with other web frameworks

How can you make sure that a RequestHandledEvent is published if your applica-
tion is fronted by JSF?

 The JSF-Spring project comes with RequestHandledFilter, a servlet filter that
publishes a RequestHandledEvent for you once the request is completed. All you
need to do is to register this filter in web.xml:

<filter>
 <filter-name>RequestHandledFilter</filter-name>
 <filter-class>de.mindmatters.faces.
 spring.RequestHandledFilter</filter-class>
</filter>

<filter-mapping>
 <filter-name>RequestHandledFilter</filter-name>
 <servlet-name>FacesServlet</servlet-name>
</filter-mapping>

Here the <filter-mapping> is configured to filter all requests to the FacesServlet
(presumed to be the JSF servlet) so that all JSF requests end with a RequestHandled-
Event being published. You may choose to configure the filter with a <url-pattern>
instead of <servlet-name>. For example:

<filter-mapping>
 <filter-name>RequestHandledFilter</filter-name>
 <url-pattern>/faces/registerStudent.jsp</url-pattern>
</filter-mapping>

Here, the focus of the filter is tightened to a particular request. Only requests to
the student registration page will fire the RequestHandledEvent.

 You should note that most applications will not require notification of Request-
HandledEvents. Unless your application includes beans that are Application-
Listeners and are interested in RequestHandledEvent, you do not need to add the
RequestHandledFilter to web.xml.

10.4 Integrating with WebWork

WebWork is an open source web framework from Open Symphony that has been
popular for quite some time. Despite its name, WebWork is actually a service invo-
cation framework that is not specific to just web applications. It its simplest form,
Webwork is based around general-purpose actions. These actions process requests
and then return a String that indicates the next step in the request chain. This

➥

could be another action or a view. However, nothing about this is web specific.
 However, for our purposes we will be discussing WebWork in the context of web

applications. And we will actually be discussing two different versions of WebWork—

Integrating with WebWork 363

WebWork 1 and WebWork 2. Because both the APIs and Spring’s integration are
quite different for both versions, we will cover them separately. Let’s begin by
looking at WebWork 1.

10.4.1 WebWork 1
As we indicated above, you create a WebWork action that is responsible for han-
dling a web request. In the case of WebWork 1, this will be an implementation of
the webwork.action.Action interface. This interface has one method: execute().
A typical implementation would subclass webwork.action.ActionSupport like this:

public class HelloAction extends webwork.action.ActionSupport {
 public String doExecute() throws Exception {
 // handle request
 return SUCCESS;
 }
}

The WebWork framework gets instances of these Actions from a subclass of web-
work.action.factory.ActionFactory. To integrate WebWork 1 and Spring, you
will use an instance of webwork.action.factory.SpringActionFactory. However,
this class is not included in the most current release (1.4) of WebWork 1. Instead,
you will have to download this class and webwork.action.factory.SpringAction-
FactoryProxy from WebWork’s CVS located at cvs.sourceforge.net/cvsroot/open-
symphony or http://cvs.sourceforge.net/viewcvs.py/opensymphony/webwork/.

 From there, configure the webwork.action.factory property in the web-
work.properties file to use the SpringActionFactory:

webwork.action.factory=webwork.action.factory.SpringActionFactory

Next, load the Spring application context using ContextLoaderServlet or
ContextLoaderListener;

<listener>
 <listener-class>org.springframework.web.
 context.ContextLoaderListener</listener-class>
 </listener-class>
</listener>

Finally, declare your actions in the Spring configuration file, wiring in properties
as you would any other Spring bean:

<bean id="someAction" class="com.foo.Action">
 <property name="fooService"><ref bean="fooService"/></property>

➥

</bean>

Ta-da! Now WebWork will look for its actions in Spring’s application context first.
If they are not found there, WebWork will simply fall back to its default behavior

364 CHAPTER 10
Working with other web frameworks

and instantiate a new instance of the Action. Now let’s see how we integrate
Spring and WebWork 2.

10.4.2 XWork/WebWork2
The APIs for WebWork 1 and WebWork 2 are really not that different for actions.
In fact, the Action interface signature is exactly the same. However, it is now part
of another command framework on which WebWork 2 depends—Xwork. The
action interface you will use in WebWork 2 is com.opensymphony.xwork.Action.

 And once again, the classes you need for Spring integration are not included
with WebWork’s latest release (2.1.6). This time you will need to download the
XWork/Spring integration JAR from http://www.ryandaigle.com/pebble/images/
webwork2-spring.jar.

 The next step is to configure the XWork configuration file, xwork.xml. Here
you will notice one important difference between WebWork1 integration and
WebWork2 integration. With WebWork 1, we defined our actions in the Spring
configuration file. With WebWork 2, we define our actions in xwork.xml, just as
we would for a “non-Spring” action:

<action name="myAction"
 class="com.foo.Action">
 <external-ref name="someDao">someDao></external-ref>
 <result name="success" type="dispatcher">
 <param name="location">/success.jsp</param>
 </result>
</action>

Notice the external-ref element. This is actually referencing a Spring bean
named someDao. The rest of the configurations we are going to cover are what
make this “magic” possible. The next step is to tell WebWork how to resolve
Spring external references:

<package name="default" extends="webwork-default"
 externalReferenceResolver="com.atlassian.xwork.ext.
 SpringServletContextReferenceResolver"/>

Now we have a resource resolver capable of resolving external beans to our
Spring application context. The final piece of configuration for the xwork.xml
file is to add an interceptor that will allow any reference to be resolved as an exter-
nal resource:

<interceptors>

➥

 <interceptor name="reference-resolver" class="com.opensymphony.
 xwork.interceptor.ExtenalReferenceInterceptor">
 <interceptor-ref name="defaultStack">

➥

Summary 365

 <interceptor-ref name="reference-resolver"/>
 </interceptor>
</interceptors>
<default-interceptor-ref name="myDefaultWebStack"/>

The last step to this process is to configure our web.xml file. Like WebWork 1, we
configure a ContextLoaderListener or ContextLoaderServlet. But we also need to
configure a com.atlassian.xwork.ext.ResolverSetupServletContextListener.
This is the “bridge”" between WebWork2 and Spring, retrieving Spring’s applica-
tion context on behalf of WebWork.:

<listener>
 <listener-class>org.springframework.web.
 context.ContextLoaderListener</listener-class>
</listener>
<listener>
 <listener-class>com.atlassian.xwork.ext.
 ResolverSetupServletContextListener</listener-class>
</listener>

And there you have it. WebWork 2 will now be able to resolve references to beans
with your Spring application context when it is creating its actions.

10.5 Summary

Spring MVC is an excellent MVC framework for developing web applications. You
may, however, find another MVC framework more to your liking. Fortunately,
choosing to use Spring in your service and data access layer doesn’t preclude the
use of an MVC framework other than Spring MVC.

 In this chapter, you saw how to integrate Spring into several prevalent MVC
frameworks, including Jakarta Struts, JavaServer Faces, Tapestry, and WebWork.
Each of these frameworks offers a different strategy for integration.

 With Struts, you actually have two choices. First, you can have your Struts
actions become Spring-aware, which provides a straightforward solution but cou-
ples your actions to Spring. Alternatively, you can have Struts delegate the han-
dling of actions to Spring beans, giving you a more loosely coupled solution but
perhaps a more complex Struts configuration.

 Tapestry conveniently comes with built-in hooks for integrating other frame-
works. To integrate Spring, we simply replace Tapestry’s default engine with a
SpringTapestryEngine and we are in business.

➥

➥

 JSF provides a similar hook. To allow JSF to integrate with Spring, we gave it a
FacesSpringVariableResolver that lets it resolve beans from both its own internal
configuration and Spring’s application context.

366 CHAPTER 10
Working with other web frameworks

 WebWork provides two solutions, depending on which version you are using.
With WebWork 1, you simply include WebWork Actions in your Spring configura-
tion file as you would any other bean. With WebWork 2, you actually give Web-
Work the ability to wire in beans that are configured externally in your Spring
configuration file.

 So now you know how to develop web applications using Spring in a variety
of ways. You can use Spring’s MVC framework or use a third-party web frame-
work of your choice to handle requests. You can also integrate with many differ-
ent view technologies. But no matter what technology you choose, you will need
to secure your web application. In the next chapter you will discover how to do
this using the Acegi Security System.

Securing
Spring applications
This chapter covers
■ Introducing the Acegi Security System
■ Securing web applications using servlet filters
■ Authenticating against databases and LDAP
■ Transparently securing method invocations
367

368 CHAPTER 11
Securing Spring applications

Have you ever noticed that most people in television sitcoms don’t lock their doors?
It happens all of the time. On Seinfeld, Kramer frequently let himself in to Jerry’s
apartment to help himself to the goodies in Jerry’s refrigerator. On Friends, the var-
ious characters often entered each others’ apartments without warning or hesita-
tion. Even once, while in London, Ross burst into Chandler’s hotel room, narrowly
missing Chandler in a compromising situation with Ross’s sister.

 In the days of Leave It to Beaver, it wasn’t so unusual for people to leave their
doors unlocked. But it seems crazy that in a day when we’re concerned with pri-
vacy and security to see television characters enabling unhindered access to their
apartments and homes.

 Likewise, when dealing with software systems, it would be unwise to let anyone
gain access to sensitive and private information. Users should be challenged to
identify themselves so that the application can choose to grant or deny access to
restricted information. Whether you are protecting an e-mail account with a user-
name/password pair or a brokerage account with a trading PIN, security is an
important aspect of most applications.

 It is no accident that we chose the word “aspect” when describing application
security. Security is a concern that transcends an application’s functionality. For
the most part, an application should play no part in securing itself. Although
you could write security functionality directly into your application’s code (and
that’s not uncommon), it is better to keep security concerns separate from appli-
cation concerns.

 If you’re thinking that it is starting to sound like security is accomplished using
aspect-oriented techniques, then you’re right. In this chapter we introduce you to
the Acegi Security System and explore ways to secure your applications using
both Spring AOP and servlet filters.1

11.1 Introducing the Acegi Security System

Acegi is a security framework that provides declarative security for your Spring-
based applications. It provides a collection of beans that are configured within a
Spring application context, taking full advantage of Spring’s support for depen-
dency injection and aspect-oriented programming.

 When securing web applications, Acegi uses servlet filters that intercept servlet
requests to perform authentication and enforce security. And, as you’ll find in
1 We’re probably going to get a lot of e-mails about this, but we have to say it anyway: servlet filters are
a primitive form of AOP. There … we’ve said it … we feel better now.

Introducing the Acegi Security System 369

section 11.4.1, Acegi employs a unique mechanism for declaring servlet filters
that enables you to inject them with their dependencies using Spring IoC.

 Acegi can also enforce security at a lower level by securing method invoca-
tions. Using Spring AOP, Acegi proxies objects, applying aspects that ensure a
user has the proper authority to call the secured methods.

 Regardless of whether you are securing a web application or require method-
level security, Acegi applies security using four main components, as shown in fig-
ure 11.1.

 Throughout this chapter, we’ll uncover the details of each of these compo-
nents. But before we get into the nitty-gritty of Acegi security, let’s take a high-
level view of the roles that each of these components play.

11.1.1 Security interceptors

In order to release a latch and open a door, you must insert a key into the lock
that trips the tumblers properly. If the cut of the key is incorrect, the tumblers
won’t be tripped and the latch will not be released. But if you have the right key,
all of the tumblers will accept the key and the latch will be released, allowing you
to open the door.

 In Acegi, the security interceptor can be thought of as a latch that prevents you
from accessing a secured resource in your application. In order to flip the latch and
get past the security interceptor you must enter your “key” (typically a username
and password) into the system. The key will then try to trip the security intercep-

Figure 11.1 The fundamental elements of Acegi security
tor’s “tumblers” in an attempt to grant you access to the secured resource.

370 CHAPTER 11
Securing Spring applications

11.1.2 Authentication managers

The first of the security interceptor’s tumblers to be tripped is the authentication
manager. The authentication manager is responsible for determining who you
are. It does this by considering your principal (typically a username) and your cre-
dentials (typically a password).

 Your principal defines who you are and your credentials are evidence that cor-
roborates your identity. If your credentials are good enough to convince the
authentication manager that your principal identifies you, then Acegi will know
who it is dealing with.

11.1.3 Access decisions managers

Once Acegi has determined who you are, it must decide whether you are autho-
rized to access to the secured resource. An access decision manager is the second
tumbler of the Acegi lock to be tripped. The access decision manager performs
authorization, deciding whether or not to let you in by considering your authen-
tication information and the security attributes that have been associated with the
secured resource.

 For example, the security rules may dictate that only supervisors should be
allowed access to a secured resource. If you have been granted supervisor privi-
leges, then the second and final tumbler, the access decision manager, will have
been tripped and the security interceptor will move out of your way and let you
gain access to the secured resource.

11.1.4 Run-as managers

If you’ve gotten past the authentication manager and the access decision man-
ager, then the security interceptor will be unlocked and the door is ready to open.
But before you twist the knob and go in, there’s one more thing that the security
interceptor might do.

 Even though you have passed authentication and have been granted access
to a resource, there may be more security restrictions behind the door. For exam-
ple, you may be granted the rights to view a webpage, but the objects that are
used to create that page may have different security requirements than the
webpage. A run-as manager can be used to replace your authentication with an
authentication that allows you access to the secured objects that are deeper in

your application.

 The usefulness of run-as managers is limited in most applications. Fortunately,
you don’t have to use or fully understand run-as managers to be able to secure

Managing authentication 371

your application with Acegi. Therefore, we’re going to regard run-as managers as
an advanced topic and forego any further discussion of them.

 Now that you’ve seen the big picture of Acegi security, let’s back up and see
how to configure each of these pieces of Acegi security, starting with the authen-
tication manager.

11.2 Managing authentication

The first step in determining whether a user should be granted access to a
secured resource is to determine the identity of the user. In most applications
this means that the user provides a username and password at a login screen.
The username (or principal) tells the application who the user claims to be. To
corroborate the user’s identity, the user also provides a password (or creden-
tials). If the application’s security mechanism confirms that the password is
good, then the user is assumed to be who they claim to be.

 In Acegi, the authentication manager assumes the job of establishing a user’s
identity. An authentication manager is defined by the net.sf.acegisecurity.
AuthenticationManager interface:

public interface AuthenticationManager {
 public Authentication authenticate(Authentication authentication)
 throws AuthenticationException;
}

The authenticate() method is given a net.sf.acegisecurity.Authentication
object (which may only carry the principal and credentials) and attempts to
authenticate the user. If successful, the authenticate() method returns a com-
plete Authentication object, including information about the user’s granted
authorities (which will be considered by the authorization manager). If authenti-
cation fails, an AuthenticationException will be thrown.

 As you can see, the AuthenticationManager interface is quite simple and you
could easily implement your own AuthenticationManager fairly easily. But Acegi
comes with ProviderManager, an implementation of AuthenticationManager that
is suitable for most situations. So instead of rolling our own authentication man-
ager, let’s take a look at how to use ProviderManager.

11.2.1 Configuring a provider manager

ProviderManager is an authentication manager implementation that delegates

responsibility for authentication to one or more authentication providers, as
shown in figure 11.2.

372 CHAPTER 11
Securing Spring applications

The idea of ProviderManager is to enable you to authenticate users against multi-
ple identity management sources. Rather than relying on itself to perform
authentication, ProviderManager steps one by one through a collection of authen-
tication providers, until one of them successfully authenticates the user (or until it
runs out of providers).

 You can configure a ProviderManager in the Spring configuration file as follows:

<bean id="authenticationManager"
 class="net.sf.acegisecurity.providers.ProviderManager">
 <property name="providers">
 <list>
 <ref bean="daoAuthenticationProvider"/>
 <ref bean="passwordDaoProvider"/>
 </list>
 </property>
</bean>

ProviderManager is given its list of authentication providers through its providers
property. Typically you’ll need only one authentication provider, but in some
cases it may be useful to provide a list of several so that if authentication fails
against one, another provider will be tried. An authentication provider is defined

Figure 11.2 A ProviderManager delegates authentication responsibility to
one or more authentication providers.
by the net.sf.acegisecurity.provider.AuthenticationProvider interface. Spring
comes with several useful implementations of AuthenticationProvider, as listed
in table 11.1.

Managing authentication 373

You can think of an AuthenticationProvider as a subordinate Authentication-
Manager. In fact, the AuthenticationProvider interface has an authenticate()
method with the same signature as the authenticate() method of Authentica-
tionManager.

 In this section, we focus on three of the most commonly used authentication
providers listed in table 11.1, starting with the simple database authentication
using DaoAuthenticationProvider.

11.2.2 Authenticating against a database

Many applications store user information, including username and password, in
a database. If that’s your situation, then Acegi has two authentication providers
that you may find useful:

■ DaoAuthenticationProvider

■ PasswordDaoAuthenticationProvider

Table 11.1 Acegi’s selection of authentication providers

Authentication Provider Purpose

net.sf.acegisecurity.adapters.
AuthByAdapterProvider

Authenticating using container adapters.

net.sf.acegisecurity.providers.
cas.CasAuthenticationProvider

Authenticating against Yale Central Authentication
Service (CAS).

net.sf.acegisecurity.providers.
dao.DaoAuthenticationProvider

Retrieving user information, including username and
password from a database.

net.sf.acegisecurity.providers.
jaas.JaasAuthenticationProvider

Retrieving user information from a JAAS login config-
uration.

net.sf.acegisecurity.providers.dao.
PasswordDaoAuthenticationProvider

Retrieving user information from a database, but let-
ting the underlying datastore perform the actual
authentication.

net.sf.acegisecurity.providers.
rcp.RemoteAuthenticationProvider

Authenticating against a remote service.

net.sf.acegisecurity.runas.
RunAsImplAuthenticationProvider

Authenticating a user who has had their identity sub-
stituted by a run-as manager.

net.sf.acegisecurity.providers.
TestingAuthenticationProvider

Unit testing. Automatically considers a Testing-
AuthenticationToken as valid. Should not be
used in production.
Both of these authentication providers enable you to verify a user’s identity by
comparing their principal and credentials against entries in a database. The

374 CHAPTER 11
Securing Spring applications

difference is in where the actual authentication takes place. A DaoAuthentication-
Provider uses its DAO to retrieve the username and password, which it then uses
to authenticate the user. PasswordDaoAuthenticationProvider pushes responsibility
for authentication off to its DAO. This is an important distinction that will become
clearer when we discuss PasswordDaoAuthenticationProvider in section 11.2.3.

 In this section, we look at using DaoAuthenticationProvider to do simple
authentication against user information kept in some datastore (typically a rela-
tional database). In the next section you’ll see how to use PasswordDaoAuthenti-
cationProvider to authenticate against an LDAP (Lightweight Directory Access
Protocol) user repository.

Declaring a DAO authentication provider

A DaoAuthenticationProvider is a simple authentication provider that uses a DAO
to retrieve user information (including the user’s password) from a database.

 With the username and password in hand, DaoAuthenticationProvider per-
forms authentication by comparing the username and password retrieved from
the database with the principal and credentials passed in an Authentication
object from the authentication manager (see figure 11.3). If the username and
password match up with the principal and credentials, then the user will be
authenticated and a fully populated Authentication object will be returned to the
authentication manager. Otherwise, an AuthenticationException will be thrown
and authentication will have failed.

 Configuring a DaoAuthenticationProvider couldn’t be simpler. The next XML
excerpt shows how to declare a DaoAuthenticationProvider bean and wire it with
a reference to its DAO.
Figure 11.3 A DaoAuthenticationManager authenticates users on behalf
of the authentication manager by pulling user information from a database.

Managing authentication 375

<bean id="authenticationProvider" class="net.sf.acegisecurity.
 providers.dao.DaoAuthenticationProvider">
 <property name="authenticationDao">
 <ref bean="authenticationDao"/>
 </property>
</bean>

The authenticationDao property is used to identify the bean that will be used to
retrieve user information from the database. This property expects an instance
of net.sf.acegisecurity.providers.dao.AuthenticationDao. The question that
remains is how the authenticationDao bean is configured.

 Acegi comes with two implementations of AuthenticationDao to choose
from: InMemoryDaoImpl and JdbcDaoImpl. We’ll start by configuring an InMemory-
DaoImpl as the authenticationDao bean and then replace it with the more use-
ful JdbcDaoImpl.

Using an in-memory DAO
Although it may seem natural to assume that an AuthenticationDao object will
always query a relational database for user information, that doesn’t necessarily
have to be the case. If your application’s authentication needs are trivial or for
development-time convenience, it may be simpler to configure your user infor-
mation directly in the Spring configuration file.

 For that purpose, Acegi comes with InMemoryDaoImpl, an AuthenticationDao
that draws its user information from its Spring configuration. You can configure
an InMemoryDaoImpl in the Spring configuration file as follows:

<bean id="authenticationDao" class="net.sf.acegisecurity.
 providers.dao.memory.InMemoryDaoImpl">
 <property name="userMap">
 <value>
 palmerd=4moreyears,ROLE_PRESIDENT
 bauerj=ineedsleep,ROLE_FIELD_OPS,ROLE_DIRECTOR
 myersn=traitor,disabled,ROLE_FIELD_OPS
 </value>
 </property>
</bean>

The userMap property takes a net.sf.acegisecurity.providers.dao.memory.
UserMap object that defines a set of usernames, passwords, and privileges. Fortu-
nately, you needn’t concern yourself with constructing a UserMap instance when
wiring InMemoryDaoImpl because there’s a property editor that handles the con-

➥

➥

version of a String to a UserMap object for you.
 Each line of the userMap String is a name-value pair where the name is the

username and the value is a comma-separated list that starts with the user’s

376 CHAPTER 11
Securing Spring applications

password and is followed by one or more names that are the authorities (think of
authorities as roles) to be granted to the user.

In the declaration of authenticationDao above, three users are defined: palmerd,
bauerj, and myersn. Respectively, their passwords are 4moreyears, ineedsleep, and
traitor. The palmerd user is defined as having the authorities of ROLE_PRESIDENT,
bauerj has been given authorities of ROLE_FIELD_OPS and ROLE_DIRECTOR, and
myersn has been given ROLE_CENTRAL_OPS privileges.

 Notice that myersn has disabled after the password. This is a special flag indi-
cating that this user has been disabled.

 InMemoryDaoImpl has obvious limitations. Primarily, administering security
requires that you edit the Spring configuration file and redeploy your applica-
tion. While this is acceptable (and maybe even helpful) in a development environ-
ment, it is probably too cumbersome for production use. Therefore we strongly
advise against using InMemoryDaoImpl in a production setting. Instead, you should
consider using JdbcDaoImpl.

Declaring a JDBC DAO
JdbcDaoImpl is a simple, yet flexible, authentication DAO. In its simplest form, all
it needs is a reference to a javax.sql.DataSource and can be declared in the
Spring configuration file as follows:

<bean id="authenticationDao"
 class="net.sf.acegisecurity.providers.dao.jdbc.JdbcDaoImpl">
 <property name="dataSource">
 <ref bean="dataSource"/>
 </property>
</bean>

JdbcDaoImpl assumes that you have certain tables set up in your database to store
user information. Specifically, it assumes a “Users” table and an “Authorities”

table, as illustrated in figure 11.4.

 When JdbcDaoImpl looks up user information, it will use “SELECT username,
password, enabled FROM users WHERE username = ?” as its query. Likewise,

Managing authentication 377

when looking up granted authorities, it will use “SELECT username, authority
FROM authorities WHERE username = ?”.

 While the table structures assumed by JdbcDaoImpl are straightforward, they
probably do not match the tables you have set up for your own application’s
security. For instance, in the Spring Training application, the Student table
holds both a user’s username (in the login column) and password. Does this
mean that you can’t use JdbcDaoImpl to authenticate students in the Spring
Training application?

 Not at all. But you must tell JdbcDaoImpl how to find the user information
by setting the usersByUserNameQuery. The following adjustment to the authen-
ticationDao bean sets it to something more appropriate for the Spring Train-
ing application:

<bean id="authenticationDao"
 class="net.sf.acegisecurity.providers.dao.jdbc.JdbcDaoImpl">
 <property name="dataSource">
 <ref bean="dataSource"/>
 </property>
 <property name="usersByUserNameQuery">
 <value>SELECT login, password
 FROM student WHERE login=?</value>
 </property>
</bean>

Now JdbcDaoImpl knows to look in the Student table for authentication informa-
tion. However, there’s still one thing missing. The Student table has no notion
of whether a student is enabled or disabled. In fact, we’ve been assuming all
along that all students are enabled. How can we tell JdbcDaoImpl to make the
same assumption?

 JdbcDaoImpl also has a usersByUserNameMapping property that takes a refer-
ence to a MappingSqlQuery instance. As you may recall from chapter 4, the
mapRow() method of MappingSqlQuery maps fields from a ResultSet into a domain
object. In the case of JdbcDaoImpl, the MappingSqlQuery given in the usersByUser-

Figure 11.4
The database
tables assumed
by JdbcDaoImpl
NameMapping is expected to convert a ResultSet (resulting from running the user
query) into a net.sf.acegisecurity.UserDetails object.

378 CHAPTER 11
Securing Spring applications

 UsersByUsernameMapping (listing 11.1) shows a MappingSqlQuery implementa-
tion suitable for mapping the results of the student user query into a UserDetails
object. It pulls the username and password from the ResultSet, but always sets
the enabled property to true.

public class UsersByUsernameMapping extends MappingSqlQuery {
 protected UsersByUsernameMapping(DataSource dataSource) {
 super(dataSource, usersByUsernameQuery);
 declareParameter(new SqlParameter(Types.VARCHAR));
 compile();
 }

 protected Object mapRow(ResultSet rs, int rownum)
 throws SQLException {
 String username = rs.getString(1);
 String password = rs.getString(2);

 UserDetails user = new User(username, password, true,
 new GrantedAuthority[]
 {new GrantedAuthorityImpl("HOLDER")});

 return user;
 }
}

The only thing left to do is to declare a UsersByUsernameMapping bean and wire it
into the usersByUserNameMapping property. The declaration of the authentication-
Dao bean that follows wires the usersByUserNameMapping property with an inner
bean to use our new user mapping:

<bean id="authenticationDao"
 class="net.sf.acegisecurity.providers.dao.jdbc.JdbcDaoImpl">
 <property name="dataSource">
 <ref bean="dataSource"/>
 </property>
 <property name="usersByUserNameQuery">
 <value>SELECT login, password
 FROM student WHERE login=?</value>
 </property>
 <property name="usersByUserNameMapping">
 <bean class=
 "com.springinaction.training.security.UsersByUsernameMapping"/>

Listing 11.1 Mapping results of a student query into a UserDetails object

Pull data from
ResultSet

Always
enable User
 </property>
</bean>

Managing authentication 379

You can also change how JdbcDaoImpl queries for authorities granted to a user. In
the same way that the usersByUserNameQuery and usersByUserNameMapping prop-
erties define how JdbcDaoImpl looks up user authentication information, the
authoritiesByUserNameQuery and authoritiesByUserNameMapping properties tell
it how to look up privileges for a user. For example, you’d use this code to look up
granted authorities from a user_privileges table:

<bean id="authenticationDao"
 class="net.sf.acegisecurity.providers.dao.jdbc.JdbcDaoImpl">
 <property name="dataSource">
 <ref bean="dataSource"/>
 </property>
 <property name="usersByUserNameQuery">
 <value>SELECT login, password
 FROM student WHERE login=?</value>
 </property>
 <property name="usersByUserNameMapping">
 <bean class="com.springinaction.training.
 security.UsersByUsernameMapping"/>
 </property>
 <property name=”authoritiesByUserNameQuery”>
 <value>SELECT login, privilege
 FROM user_privileges where login=?</value>
 </property>
</bean>

You could also set a custom MappingSqlQuery to the authoritiesByUserName-
Mapping property to customize how the authorities query gets mapped to a
net.sf.acegisecurity.GrantedAuthority object. But since the default Mapping-
SqlQuery is sufficient for the query given above, we’ll just leave it alone.

Working with encrypted passwords
By default, DaoAuthenticationProvider assumes that the user’s password has
been stored in clear text (unencrypted). But unencrypted passwords can use a
password encoder to encode the password entered by the user before comparing
it with the password retrieved from the database. Acegi comes with three pass-
word encoders:

■ PlaintextPasswordEncoder (default)—Performs no encoding on the pass-
word, returning it unaltered.

■ Md5PasswordEncoder—Performs Message Digest (MD5) encoding on the

➥

password.
■ ShaPasswordEncoder—Performs Secure Hash Algorithm encoding on the

password.

380 CHAPTER 11
Securing Spring applications

You can alter DaoAuthenticationProvider’s password encoder by setting its
passwordEncoder property. For example, to use MD5 encoding use this code:

<property name="passwordEncoder">
 <bean class=
 "net.sf.acegisecurity.providers.encoding.Md5PasswordEncoder"/>
</property>

You’ll also need to set a salt source for the encoder. A salt source provides the salt,
or encryption key, for the encoding. Acegi provides two salt sources:

■ ReflectionSaltSource—Uses a specified property of the user’s User object
to retrieve the salt

■ SystemWideSaltSource—Uses the same salt for all users

SystemWideSaltSource is suitable for most situations. The following XML wires a
SystemWideSaltSource into the DaoAuthenticationProvider’s saltSource property:

<property name="saltSource">
 <bean class=
 "net.sf.acegisecurity.providers.dao.SystemWideSaltSource">
 <property name="systemWideSalt">
 <value>123XYZ</value>
 </property>
 </bean>
</property>

A ReflectionSaltSource uses some property specific to the user as the salt for the
User’s password. It is more secure because it means that each user’s password will
be encoded differently. To wire a ReflectionSaltSource, wire it into the salt-
Source property like this:

<property name="saltSource">
 <bean class="net.sf.acegisecurity.
 providers.dao.ReflectionSaltSource">
 <property name="userPropertyToUse">
 <value>userName</value>
 </property>
 </bean>
</property>

Here the user’s userName property is used as the salt to encrypt the user’s pass-
word. It’s important that the salt be static and never change; otherwise, it will be
impossible to authenticate the user.

➥

Managing authentication 381

Caching user information
Every time that a request is made to a secured resource, the authentication man-
ager is asked to retrieve the user’s security information. But if retrieving the user’s
information involves performing a database query, querying for the same data
every time may not result in good performance. Recognizing that a user’s infor-
mation will not frequently change, it may be better to cache the user data upon
the first query and retrieve it from cache with every subsequent request.

 DaoAuthenticationProvider supports caching of user information through
implementations of the net.sf.acegisecurity.providers.dao.UserCache interface:

public interface UserCache {
 public UserDetails getUserFromCache(String username);
 public void putUserInCache(UserDetails user);
 public void removeUserFromCache(String username);
}

The methods in the UserCache are fairly self-explanatory, providing the ability to
put, retrieve, or remove user details from the cache. It would be simple enough for
you to write your own implementation of UserCache. However, Acegi provides two
convenient implementations that you should consider before developing your own:

■ net.sf.acegisecurity.providers.dao.cache.NullUserCache

■ net.sf.acegisecurity.providers.dao.cache.EhCacheBasedUserCache

NullUserCache does not actually perform any caching. Instead it always returns
null from its getUserFromCache() method. This is the default UserCache used by
DaoAuthenticationProvider.

 EhCacheBasedUserCache is a more useful cache implementation. As its name
implies, it is based on the open source ehcache project. ehcache is a simple and fast
caching solution for Java and is the default and recommended cache used by
Hibernate. (For more information on ehcache, visit the ehcache website at http://
ehcache.sourceforge.net.)

 Using ehcache with DaoAuthenticationProvider is simple. Simply declare an
EhCacheBasedUserCache bean:

<bean id="userCache" class="net.sf.acegisecurity.
 providers.dao.cache.EhCacheBasedUserCache">
 <property name="minutesToIdle">15</property>
</bean>

➥

The minutesToIdle property tells the cache how long (in minutes) the user’s
information should reside in cache without being accessed. Here we’ve told the
cache to remove the user information from cache after 15 minutes of inactivity.

382 CHAPTER 11
Securing Spring applications

 With the userCache bean declared, the only thing left to do is to wire it into the
userCache property on the DaoAuthenticationProvider:

<bean id="authenticationProvider" class="net.sf.acegisecurity.
 providers.dao.DaoAuthenticationProvider">
 <property name="userCache">
 <ref bean="userCache"/>
 </property>
</bean>

11.2.3 Authenticating against an LDAP repository

DaoAuthenticationProvider works by retrieving the user’s principal and creden-
tials from a database and comparing them with the principal and credentials pro-
vided by the user at login. This is fine if you want the authentication provider to
be ultimately responsible for authentication decisions. But it may be that you’d
rather delegate authentication responsibility to a third-party system.

 For example, it is quite common to authenticate against an LDAP server. In
this situation, it is the LDAP server itself that performs the authentication on
behalf of the application. The application itself never even sees the user’s
stored credentials.

 PasswordDaoAuthenticationProvider is similar in purpose to DaoAuthentica-
tionProvider except that its only job is to retrieve user details. The actual authen-
tication is delegated to its DAO. And, as you’ll see, in the case of LDAP, the DAO
further delegates authentication to the LDAP server.

 To use PasswordDaoAuthenticationProvider, you’ll need to declare it in your
Spring configuration as follows:

<bean id="authenticationProvider" class="net.sf.acegisecurity.
 providers.dao.PasswordDaoAuthenticationProvider">
 <property name="passwordAuthenticationDao">
 <ref bean="passwordAuthenticationDao"/>
 </property>
</bean>

The passwordAuthenticationDao property is wired with a reference to a bean of
the same name. The bean wired into this property is the DAO that will perform
the authentication and retrieve user information. It should implement the net.
sf.acegisecurity.providers.dao.PasswordAuthenticationDao interface:

public interface PasswordAuthenticationDao {
 public UserDetails loadUserByUsernameAndPassword(String username,

➥

➥

 String password) throws DataAccessException,
 BadCredentialsException;
}

Managing authentication 383

This interface is similar to the AuthenticationDao interface, except that because
the DAO will be expected to perform authentication in addition to retrieving user
details, its loadUserByUsernameAndPassword() method takes a password String as
an argument and could potentially throw a BadCredentialsException if authenti-
cation fails.

 Unlike many of the other Acegi interfaces you’ll see in this chapter, the latest
version of Acegi (version 0.6.1) does not come with any useful implementations of
the PasswordAuthenticationDao interface. But you don’t have to go far to find
one. At the time we were writing this chapter, Acegi’s sandbox in CVS2 contained
LdapPasswordAuthenticationDao, an implementation of PasswordAuthentica-
tionDao that provides LDAP authentication. It’s not yet an official part of Acegi,
but if you want to pull it out of the sandbox and give it a spin, all you’ll need to do
is redeclare the passwordAuthenticationDao bean as follows:

<bean id="passwordAuthenticationDao" class="net.sf.acegisecurity.
 providers.dao.ldap.LdapPasswordAuthenticationDao">
 <property name="host">
 <value>security.springinaction.com</value>
 </property>
 <property name="port">
 <value>389</value>
 </property>
 <property name="rootContext">
 <value>DC=springtraining,DC=com</value>
 </property>
 <property name="userContext">
 <value>CN=user</value>
 </property>
 <property name="rolesAttributes">
 <list>
 <value>memberOf</value>
 <value>roles</value>
 </list>
 </property>
</bean>

LdapPasswordAuthenticationDao has several properties that guide it in perform-
ing authentication against an LDAP server. The only required property is the host
property, which sets the hostname of the LDAP server. But you’ll likely want to
adjust one or more of the other properties.

➥

2 cvs.sourceforge.net:/cvs/acegisecurity

384 CHAPTER 11
Securing Spring applications

 The port property indicates the port that the LDAP server is listening on. This
defaults to 389 (the well-known port for LDAP), but we’ve explicitly set it to 389
here for the sake of illustration.

 The rootContext indicates the root LDAP context. It is empty by default, so
you’ll probably want to override it. This diagram illustrates how the rootContext
property is used (along with the host and port properties) to construct the pro-
vider URL for the LDAP server:

The userContext property specifies the LDAP context where user information is
kept. It is CN=Users by default, but we’ve overridden it here to be CN=user. Both
rootContext and userContext are used along with the username to construct the
user’s principal:

Finally, the rolesAttributes property allows you to list one or more attributes
that may be associated with an entry in LDAP where a user’s roles are kept. By
default this list has a single entry of memberOf, but we’ve added roles to the list.

 One important thing to note about the roles attributes is that when LdapPass-
wordAuthenticationDao retrieves the attributes from LDAP, it will automatically
prefix them with ROLE_. You’ll see how this prefix is useful later in section 11.3.2
when we discuss authorization using role voters.

11.2.4 Enabling Single Sign-On with Acegi and Yale CAS
How many passwords do you have? If you’re like most people, you probably jug-
gle a dozen or more passwords for the various systems that you access every day.
Keeping track of all of these passwords is a challenge and being forced to log into

Managing authentication 385

multiple systems is a nuisance. It would be nice to be able to log in once and have
that login automatically authenticate you into all of the systems you use.

 Single Sign-On (SSO) is a hot security topic. The name says it all: log in once,
access everything. Yale University’s Technology and Planning group has created
an excellent SSO solution known as the Central Authentication Service (CAS) that
works well with Acegi.

 The details of setting up and using CAS go well beyond the scope of this book.
However, we will discuss the fundamental authentication approach employed by
CAS and explore how to use Acegi along with CAS. For more information on CAS,
we strongly recommend that you visit the CAS homepage at http://tp.its.yale.edu/
tiki/tiki-index.php?page=CentralAuthenticationService.

 To understand where Acegi fits within a CAS-authenticated application, it’s
important to understand how a typical CAS authentication scenario works. Con-
sider the flow of a request to a secured service, as shown in figure 11.5.

 When the web browser requests a service b, the service will look for a CAS
ticket in the request to determine whether the user is authenticated. If the ticket is
not found, then it means that the user has not been authenticated. As a result, the
user is redirected to the CAS login page c.

 From the CAS login page, the user enters his or her username and password. If
CAS successfully authenticates the user, then a ticket is created and associated with
the requested service. The CAS server then redirects the user to the originally
requested service (this time with the ticket in the request) d.

 Again, the service looks for the ticket in the request. This time it finds the
ticket and contacts the CAS server to verify that the ticket is valid e. If CAS
responds indicating that the ticket is valid for the service being requested, the ser-
vice will allow the user access to the application.

Figure 11.5
Securing an

application using
Yale CAS

386 CHAPTER 11
Securing Spring applications

Later, when the user requests access to another CAS-enabled application, that
application will contact CAS. Because the user has already logged in before, CAS
will respond with a service ticket for the new application without prompting the
user to log in again.

 One of the key concepts you should understand about CAS is that the secured
application never handles the user’s credentials. When users are prompted to log
into the application, they are actually logging into the CAS server. The applica-
tion itself never sees a user’s credentials. The only form of security that the appli-
cation does is to verify that the user’s ticket is valid by consulting the CAS server.
This is a good thing because it means that only one application (CAS) will be
responsible for handling user authentication.

 When using Acegi with CAS, Acegi takes on the task of verifying a CAS ticket on
the behalf of the application. This frees the application itself from being involved
in the CAS authentication process.

 It accomplishes this using CasAuthenticationProvider, an authentication pro-
vider that doesn’t care about usernames and passwords. Instead it accepts a CAS
ticket as its credentials. You configure a CasAuthenticationProvider bean in the
Spring configuration file:

<bean id="casAuthenticationProvider" class="net.sf.acegisecurity.
 providers.cas.CasAuthenticationProvider">
 <property name="ticketValidator">
 <ref bean="ticketValidator"/>
 </property>
 <property name="casProxyDecider">
 <ref bean="casProxyDecider"/>
 </property>
 <property name="statelessTicketCache">
 <ref bean="statelessTicketCache"/>
 </property>
 <property name="casAuthoritiesPopulator">
 <ref bean="casAuthoritiesPopulator"/>
 </property>
 <property name="key">
 <value>some_unique_key</value>
 </property>
</bean>

As you can see, CasAuthenticationProvider does its job by collaborating with sev-
eral other beans. The first of these is the ticketValidator bean, which is wired
into the ticketValidator property. It is declared in the Spring configuration file

➥

as follows:
<bean id="ticketValidator" class="net.sf.acegisecurity.
 providers.cas.ticketvalidator.CasProxyTicketValidator">➥

Managing authentication 387

 <property name="casValidate">
 <value>https://localhost:8443/cas/proxyValidate</value>
 </property>
 <property name="serviceProperties">
 <ref bean="serviceProperties"/>
 </property>
</bean>

CasProxyTicketValidator validates the CAS service ticket by contacting the CAS
server. The casValidate property specifies the URL on which the CAS server pro-
cesses validation requests.

 The serviceProperties bean is a bean that carries important configuration
information for CAS-related beans:

<bean id="serviceProperties"
 class="net.sf.acegisecurity.ui.cas.ServiceProperties">
 <property name="service">
 <value>https://localhost:8443/training/
 j_acegi_cas_security_check</value>
 </property>
</bean>

The service property specifies a URL that CAS should send the user to after
login. Later, in section 11.4.3, you’ll see how this URL is serviced.

 Back on the casAuthenticationProvider bean, the casProxyDecider property
is wired with a reference to the casProxyDecider bean, which takes a reference to a
bean of the type net.sf.acegisecurity.providers.cas.CasProxyDecider. To
understand the role of the casProxyDecider property, you must understand how
CAS supports proxy services.

 CAS supports the notion of proxy services that authenticate a user on behalf of
another application. A typical example of a proxy service is a portal that authen-
ticates the user on behalf of the portlet applications that it presents. When a user
logs into a portal, the portal ensures that the user is also implicitly logged into its
applications using proxy tickets.

 How CAS deals with proxy tickets is an advanced topic. We refer you to the CAS
documentation (http://tp.its.yale.edu/tiki/tiki-index.php?page=CasTwoOverview)
for more details on proxy tickets. Suffice it to say that a CasProxyDecider decides
whether to accept proxy tickets. Acegi comes with three implementations of
CasProxyDecider:

■ AcceptAnyCasProxy—Accepts a proxy request from any service

➥

■ NamedCasProxyDecider—Accepts proxy requests from those in a list of
named services

■ RejectProxyTickets—Rejects all proxy requests

388 CHAPTER 11
Securing Spring applications

For simplicity’s sake, let’s assume that your application doesn’t involve proxy ser-
vices. This makes RejectProxyTickets the most appropriate CasProxyDecider for
the casProxyDecider bean:

<bean id="casProxyDecider" class="net.sf.acegisecurity.
 providers.cas.proxy.RejectProxyTickets"/>

The statelessTicketCache property exists to help support stateless clients (such
as clients of remoting services), which cannot store CAS tickets in HttpSession.
Unfortunately, even if stateless clients will not access your application, the
statelessTicketCache property is required. Acegi only comes with one imple-
mentation, so declaring a statelessTicketCache bean is simple enough:

<bean id="statelessTicketCache" class="net.sf.acegisecurity.
 providers.cas.cache.EhCacheBasedTicketCache">
 <property name="minutesToIdle"><value>20</value></property>
</bean>

The final bean that CasAuthenticationProvider collaborates with is the cas-
AuthoritiesPopulator bean. As an SSO implementation, CAS only performs
authentication—it plays no part in how authorities are assigned to users. To make
up the difference, you’ll need a net.sf.acegisecurity.providers.cas.Cas-

AuthoritiesPopulator bean.
 Acegi comes with only one implementation of CasAuthoritiesPopulator. Dao-

CasAuthoritiesPopulator loads user details from a database using an authentica-
tion DAO (as discussed in section 11.2.2). Declare the casAuthoritiesPopulator
bean like this:

<bean id="casAuthoritiesPopulator" class="net.sf.acegisecurity.
 providers.cas.populator.DaoCasAuthoritiesPopulator">
 <property name="authenticationDao">
 <ref bean="inMemoryDaoImpl"/>
 </property>
</bean>

Finally, the key property of CasAuthenticationManager specifies a String value
that the authentication manager will use to identify tokens that it has previously
authenticated. You can set this to any arbitrary value.

 There’s a bit more to SSO with CAS and Acegi than just CasAuthentication-
Manager. We’ve only discussed how a CasAuthenticationProvider performs
authentication. In section 11.4.3 you’ll see how a user is sent to the CAS login
screen when CasAuthenticationManager fails to authenticate a user.

➥

➥

➥

 But for now, let’s look at how Acegi determines whether an authenticated user
has the proper authority to access the secured resource.

Controlling access 389

11.3 Controlling access

Authentication is only the first step in Acegi security. Once Acegi knows who the
user is, it must decide whether to grant access to the resources that it secures.
That’s where access decision managers come in.

 Just as an authentication manager is responsible for establishing a user’s iden-
tity, an access decision manager is responsible for deciding if the user has the
proper privileges to access secured resources. An access decision manager is
defined by the net.sf.acegisecurity.AccessDecisionManager interface:

public interface AccessDecisionManager {
 public void decide(Authentication authentication, Object object,
 ConfigAttributeDefinition config)
 throws AccessDeniedException;
 public boolean supports(ConfigAttribute attribute);
 public boolean supports(Class clazz);
}

The supports() methods consider the secured resource’s class type and its config-
uration attributes (the access requirements of the secured resource) to determine
whether the access decision manager is capable of making access decisions for the
resource. The decide() method is where the ultimate decision is made. If it
returns without throwing an AccessDeniedException, then access to the secured
resource is granted. Otherwise, access is denied.

11.3.1 Voting access decisions

It seems simple enough to write your own implementation of AccessDecision-
Manager. But why do something you don’t have to do? Acegi comes with three imple-
mentations of AccessDecisionManager that are suitable for most circumstances:

■ net.sf.acegisecurity.vote.AffirmativeBased

■ net.sf.acegisecurity.vote.ConsensusBased

■ net.sf.acegisecurity.vote.UnanimousBased

These three access decision managers have rather strange names, but they make
more sense when you consider Acegi’s authorization strategy.

 Acegi’s access decision managers are ultimately responsible for determining
the access rights for an authenticated user. However, they do not arrive at their
decision on their own. Instead, they poll one or more objects that vote on whether

a user is granted access to a secured resource. Once all votes are in, the decision
manager tallies the votes and arrives at its final decision.

390 CHAPTER 11
Securing Spring applications

 What differentiates each of the access decision managers is in how it reckons
its final decision. Table 11.2 describes how each of the access decision managers
settles on whether access is granted.

All of the access decision managers are configured the same in the Spring config-
uration file. For example, the following XML excerpt configures a UnanimousBased
access decision manager:

<bean id="accessDecisionManager"
 class="net.sf.acegisecurity.vote.UnanimousBased">
 <property name="decisionVoters">
 <list>
 <ref bean="roleVoter"/>
 </list>
 </property>
</bean>

The decisionVoters property is where you provide the access decision manager
with its list of voters. In this case, there’s only one voter, which is a reference to a
bean named roleVoter. Let’s see how the roleVoter is configured.

11.3.2 Deciding how to vote

Although access decision voters don’t have the final say on whether access is
granted to a secured resource, they play an important part in the access decision
process. An access decision voter’s job is to consider the user’s granted authorities
alongside the authorities required by the configuration attributes of the secured
resource. Based on this information, the access decision voter casts its vote for the
access decision manager to use in making its decision.

 An access decision voter is any object that implements the net.sf.acegisecu-
rity.vote.AccessDecisionVoter interface:

public interface AccessDecisionVoter {

Table 11.2 How Acegi’s access decision managers tally votes

Access Decision Manager How It Decides

AffirmativeBased Allows access if at least one voter votes to grant access

ConsensusBased Allows access if a consensus of voters vote to grant access

UnanimousBased Allows access only if no voter votes to deny access
 public static final int ACCESS_GRANTED = 1;
 public static final int ACCESS_ABSTAIN = 0;
 public static final int ACCESS_DENIED = -1;

Controlling access 391

 public boolean supports(ConfigAttribute attribute);
 public boolean supports(Class clazz);
 public int vote(Authentication authentication, Object object,
 ConfigAttributeDefinition config);
}

As you can see the AccessDecisionVoter interface is very similar to that of Access-
DecisionManager. The big difference is that instead of a decide() method that
returns void, there is a vote() method that returns int. That’s because an access
decision voter doesn’t decide whether to allow access … it only returns its vote as
to whether to grant access.

 When faced with the opportunity to place a vote, an access decision voter can
vote one of three ways:

■ ACCESS_GRANTED—The voter wishes to allow access to the secured resource.
■ ACCESS_DENIED—The voter wishes to deny access to the secured resource.
■ ACCESS_ABSTAIN—The voter is indifferent.

As with most Acegi components, you are free to write your own implementation
of AccessDecisionVoter. However, Acegi comes with RoleVoter, a very useful
implementation that votes when the secured resources configuration attributes
represent a role. More specifically, RoleVoter participates in a vote when the
secured resource has a configuration attribute whose name starts with ROLE_.

 The way that RoleVoter decides on its vote is by simply comparing all of the
configuration attributes of the secured resource (that are prefixed with ROLE_)
with all of the authorities granted to the authenticated user. If RoleVoter finds a
match, then it will cast an ACCESS_GRANTED vote. Otherwise it will cast an
ACCESS_DENIED vote.

 The RoleVoter will only abstain from voting when the authorities required for
access are not prefixed with ROLE_. For example, if the secured resource only
requires non-role authorities (such as CREATE_USER) then the RoleVoter will
abstain from voting.

 You can configure a RoleVoter with the following XML in the Spring configu-
ration file:

<bean id="roleVoter"
 class="net.sf.acegisecurity.vote.RoleVoter"/>

As stated, RoleVoter only votes when the secured resource has configuration

attributes that are prefixed with ROLE_. However, the ROLE_ prefix is only a default.
You may choose to override the default prefix by setting the rolePrefix property:

392 CHAPTER 11
Securing Spring applications

<bean id="roleVoter"
 class="net.sf.acegisecurity.vote.RoleVoter">
 <property name="rolePrefix">
 <value>GROUP_</value>
 </property>
</bean>

Here, the default prefix has been overridden to be GROUP_. Thus the RoleVoter
will now only cast authorization votes on privileges that begin with GROUP_.

11.3.3 Handling voter abstinence

Knowing that any voter can vote to grant or deny access or abstain from voting, a
question you may have now is what will happen if all voters abstain from voting.
Will the user be granted or denied access?

 By default, all of the access decision managers deny access to a resource if all
of the voters abstain. However, you can override this default behavior by setting
the allowIfAllAbstain property on the access decision manager to true:

<bean id="accessDecisionManager"
 class="net.sf.acegisecurity.vote.UnanimousBased">
 <property name="decisionVoters">
 <list>
 <ref bean="roleVoter"/>
 </list>
 </property>
 <property name="allowIfAllAbstain">
 <value>true</value>
 </property>
</bean>

By setting allowIfAllAbstain to true, you are establishing a policy of “silence is
consent.” In other words, if all voters abstain from voting, then access is granted
as if they had voted to grant access.

 Now that you’ve seen how Acegi’s authentication and access control managers
work, let’s put them to work. In the next section you’ll see how to use Acegi’s col-
lection of servlet filters to secure a web application. Later, in section 11.5, we’ll
dig deep into an application and see how to use Spring AOP to apply security at
the method-invocation level.

11.4 Securing web applications

Acegi’s support for web security is heavily based on servlet filters. These filters

intercept an incoming request and apply some security processing before the
request is handled by your application. Acegi comes with a handful of filters that

Securing web applications 393

intercept servlet requests and pass them on to the authentication and access deci-
sion managers to enforce security. Depending on your needs, you may use up to
six filters to secure your application. Table 11.3 describes each of Acegi’s filters.

When a request is submitted to an Acegi-secured web
application, it passes through each of Acegi’s filters
in the following sequence (refer to figure 11.6):

1 If a channel-processing filter is configured,
it will be the first to handle the request.
The channel-processing filter will examine
the request’s delivery channel (typically
either HTTP or HTTPS) and decide if the
channel sufficiently meets the security
requirements. If not, the request is redi-
rected to the same URL, altering the chan-
nel to meet the security requirements.

2 Next, one of the authentication-processing
filters (which includes the CAS-processing
filter and HTTP Basic authorization filter)
will determine whether the request is an

Table 11.3 Acegi’s servlet filters

Filter Purpose

Channel-processing filter Ensures that a request is transmitted over a secure channel
(such as HTTPS)

Authentication-processing filter Accepts authentication requests and pipes them to the authentication
manager to perform authentication

CAS-processing filter Accepts CAS service tickets as evidence that Yale CAS has authenti-
cated a user

HTTP Basic authorization filter Processes authentication performed using HTTP Basic authentication

Integration filter Handles storage of authentication between requests (in HTTP Session,
for example)

Security enforcement filter Ensures that a user has been authenticated and meets the property
authorization requirements to access a secured web resource

Figure 11.6 The flow of a
request through each of Acegi’s
filters
authentication request. If so, the perti-
nent user information (typically username/password) is retrieved from
the request and passed on to the authentication manager to determine

394 CHAPTER 11
Securing Spring applications

the user’s identity. If this is not an authentication request, the request
moves on down the filter chain.

3 The integration filter attempts to retrieve a user’s authentication from
the location it is kept between requests (typically HTTP Session). If the
user’s authentication information is found, it is placed into a Context-
Holder object (which is basically a ThreadLocal) for convenient retrieval
by all of Acegi’s components.

4 Finally, the security enforcement filter makes the final decision as to
whether the user is granted access to the secured resource. First, the
security enforcement filter will consult the authentication manager. If the
user hasn’t been successfully authenticated, the security enforcement fil-
ter will send the user to an authentication entry point (i.e., a login page).
Next, the security enforcement filter will consult the access decision
manager to determine if the user has the property authority to access the
secured resource. If not, then an HTTP 403 (Forbidden) message is
returned to the browser.

5 If the user makes it past the security enforcement filter, then he or she
will be granted access to the secured web resource.

We’ll explore each of these filters individually in more detail. But before you can
start using them, you need to learn how Acegi places a Spring-like twist on serv-
let filters.

11.4.1 Proxying Acegi’s filters

If you’ve ever used servlet filters, you know that for them to take effect, you must
configure them in the web application’s web.xml file, using the <filter> and
<filter-mapping> elements. While this works, it is inconsistent with Spring’s way
of configuring components using dependency injection.

 For example, suppose you have the following filter declared in your web.xml file:

<filter>
 <filter-name>Foo</filter-name>
 <filter-class>FooFilter</filter-class>
</filter>

Now suppose that FooFilter needs a reference to a Bar bean to do its job. How

can you inject an instance of Bar into FooFilter?

 The short answer is that you can’t. The web.xml file has no notion of depen-
dency injection, nor is there a straightforward way of retrieving beans from the

Securing web applications 395

Spring application context and wiring them into a servlet filter. The only option
you have is to use Spring’s WebApplicationContextUtils to retrieve the “bar”
bean from the Spring context:

ApplicationContext ctx = WebApplicationContextUtils.
 getWebApplicationContext(servletContext);
Bar bar = (Bar) ctx.getBean("bar");

But the problem with this approach is that you must code Spring-specific code
into your servlet filter. Furthermore, you end up hard-coding a reference to the
name of the Bar bean.

 But Acegi provides a better way through FilterToBeanProxy. FilterToBean-
Proxy is a special servlet filter that, by itself, doesn’t do much. Instead, it delegates
its work to a bean in the Spring application context. The delegate bean imple-
ments the javax.servlet.Filter interface just like any other servlet filter, but is
configured in the Spring configuration file instead of web.xml.

 By using FilterToBeanProxy, you are able to configure the actual filter in
Spring, taking full advantage of Spring’s support for dependency injection. As
illustrated in figure 11.7, the web.xml file only contains the <filter> declaration
for FilterToBeanProxy. The actual FooFilter is configured in the Spring configu-
ration file and uses setter injection to set the bar property with a reference to a
Bar bean.

 To use FilterToBeanProxy, you must set up a <filter> entry in the web appli-
cation’s web.xml file. For example, if you are configuring a FooFilter using Fil-
terToBeanProxy, you’d use the following code:
Figure 11.7 FilterToBeanProxy proxies filter handling to a delegate filter bean in the Spring
application context.

396 CHAPTER 11
Securing Spring applications

<filter>
 <filter-name>Foo</filter-name>
 <filter-class>net.sf.acegisecurity.util.
 FilterToBeanProxy</filter-class>
 <init-param>
 <param-name>targetClass</param-name>
 <param-value>
 FooFilter
 </param-value>
 </init-param>
</filter>

Here the targetClass initialization parameter is set to the fully qualified class
name of the delegate filter bean. When this FilterToBeanProxy is initialized, it will
look for a bean in the Spring context whose type is FooFilter. FilterToBeanProxy
that will delegate its filtering to the FooFilter bean found in the Spring context:

<bean id="fooFilter"
 class="FooFilter">
 <property name="bar">
 <ref bean="bar"/>
 </property>
</bean>

If a FooFilter bean isn’t found, an exception will be thrown. If more than one
matching bean is found, then the first one found will be used.

 Optionally, you can set the targetBean initialization parameter instead of
targetClass to pick out a specific bean from the Spring context. For example, you
might pick out the fooFilter bean by name by setting targetBean as follows:

<filter>
 <filter-name>Foo</filter-name>
 <filter-class>net.sf.acegisecurity.
 util.FilterToBeanProxy</filter-class>
 <init-param>
 <param-name>targetBean</param-name>
 <param-value>fooFilter</param-value>
 </init-param>
</filter>

The targetBean initialization parameter enables you to be more specific about
which bean to delegate filtering to, but requires that you match the delegate’s
name exactly between web.xml and the Spring configuration file. This creates
extra work for you if you decide to rename the bean. For this reason, it’s probably
better to use targetClass instead of targetBean.

➥

➥

 Regardless of whether you choose targetClass or targetBean, FilterToBean-
Proxy must be able to access the Spring application context. This means that the

Securing web applications 397

Spring context has to be loaded using Spring’s ContextLoaderListener or Con-
textLoaderServlet (see chapter 8).

 Finally, you’ll need to associate the filter to a URL pattern. The following
<filter-mapping> ties the Acegi-Authentication instance of FilterToBeanProxy
to a URL pattern of /* so that all requests are processed:

<filter-mapping>
 <filter-name>Acegi-Authentication</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>

/* is the recommended URL pattern for all of Acegi’s filters. The idea is that
Acegi should intercept all requests and then let the underlying security managers
decide if and how to secure the request.

NOTE It may be interesting to know that there’s nothing about FilterToBean-
Proxy that is specific to Acegi or to securing web applications. You may
find that FilterToBeanProxy is useful when configuring your own serv-
let filters. In fact, because it’s so useful, there has been some discussion
on the Spring developer mailing list to suggest that FilterToBean-
Proxy may move out of Acegi and into the core Spring project in some
future release.

Now that you know how to use FilterToBeanProxy, you’re ready to start using it to
setup the web components of Acegi security. Let’s start with the filter that is cen-
tral to Acegi security, the security enforcement filter.

11.4.2 Enforcing web security

Whenever a user requests a page within your web application, that page may or
may not be a page that needs to be secure. In Acegi, a security enforcement filter han-
dles the interception of requests, determining whether a request is secure and giv-
ing the authentication and access decision managers a chance to verify the user’s
identity and privileges. It is declared in the Spring configuration file as follows:

<bean id="securityEnforcementFilter" class="net.sf.acegisecurity.
 intercept.web.SecurityEnforcementFilter">
 <property name="securityInterceptor">
 <ref bean="securityInterceptor"/>
 </property>
 <property name="authenticationEntryPoint">

➥

 <ref bean="authenticationEntryPoint"/>
 </property>
</bean>

398 CHAPTER 11
Securing Spring applications

Here the SecurityEnforcementFilter has been wired with references to two other
beans: authenticationEntryPoint and securityInterceptor. We’ll talk more
about the authenticationEntryPoint property a little later. For now let’s focus on
the securityInterceptor property.

Using a filter security interceptor

The securityInterceptor property is wired with a reference to a bean of the same
name. If you think back to the door lock analogy from earlier in this chapter, the
security interceptor is the latch that must be released for the door to be opened.
It is what coordinates the efforts of the authentication manager, access decision
manager, and run-as manager.

 For the purposes of web security, Acegi’s FilterSecurityInterceptor class per-
forms the job of the security interceptor. It is declared in the Spring configuration
file as follows:

<bean id="securityInterceptor" class="net.sf.acegisecurity.
 intercept.web.FilterSecurityInterceptor">
 <property name="authenticationManager">
 <ref bean="authenticationManager"/>
 </property>
 <property name="accessDecisionManager">
 <ref bean="accessDecisionManager"/>
 </property>
 <property name="objectDefinitionSource">
 <value>
 CONVERT_URL_TO_LOWERCASE_BEFORE_COMPARISON
 \A/admin/.*\Z=ROLE_ADMIN
 \A/student/.*\Z=ROLE_STUDENT,ROLE_ALUMNI
 \A/instruct/.*\Z=ROLE_INSTRUCTOR
 </value>
 </property>
</bean>

The first two properties wired here are references to the authentication manager
and access decision manager beans defined earlier in this chapter. The security
interceptor will use the authentication manager to determine whether a user has
logged in and to obtain the user’s granted authorities. It will use the access deci-
sion manager to determine whether the use has the proper authorities to access
the secured resource.

 The objectDefinitionSource property tells the security interceptor what

➥

authorities are required for the various requests that are intercepted. This prop-
erty has a property editor that makes it easy to configure it as a String value. The

Securing web applications 399

String is composed of several lines, any of which could be a directive or a URL-to-
authority mapping.

 As defined above, the first line of the objectDefinitionSource value is a direc-
tive that indicates that the URL of the request should be normalized to lowercase
before comparing it with any of the patterns that follow.

 The remaining lines of this property map URL patterns to the authorities
that must be granted to the user in order for the user to have access to those
URLs. As shown here, the URL patterns are in the form of regular expressions.
Therefore, as defined in the objectDefinitionSource property of the security-
Interceptor bean:

■ /admin/reports.htm will require that the user be granted ROLE_ADMIN
authority.

■ /student/manageSchedule.htm will require that the user be granted either
ROLE_STUDENT or ROLE_ALUMNI authority.

■ /instruct/postCourseNotes.htm will require that the user be granted
ROLE_INSTUCTOR authority.

If you prefer, you may use Ant-like URL patterns instead of regular expressions by
adding a PATTERN_TYPE_APACHE_ANT directive to the object definition source. For
example, the following definition of objectDefinitionSource is equivalent to the
one above:

<property name="objectDefinitionSource">
 <value>
 CONVERT_URL_TO_LOWERCASE_BEFORE_COMPARISON
 PATTERN_TYPE_APACHE_ANT
 /admin/**=ROLE_ADMIN
 /student/**=ROLE_STUDENT,ROLE_ALUMNI
 /instruct/**=ROLE_INSTRUCTOR
 </value>
</property>

As with all of Acegi’s filters, the security-enforcement filter is a filter delegate
bean that is fronted by FilterToBeanProxy. This means that the first step in con-
figuring a security-enforcement filter is to add <filter> and <filter-mapping>
elements for FilterToBeanProxy to the application’s web.xml file:

<filter>
 <filter-name>Acegi-Security</filter-name>

 <filter-class>net.sf.acegisecurity.util.
 FilterToBeanProxy</filter-class>
 <init-param>
 <param-name>targetBean</param-name>

➥

400 CHAPTER 11
Securing Spring applications

 <param-value>securityEnforcementFilter</param-value>
 </init-param>
</filter>
…
<filter-mapping>
 <filter-name>Acegi-Security</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>

Notice that the <filter-mapping>’s <url-pattern> maps the security-enforcement
filter to filter all requests. This is typical of Acegi’s filters. The idea is to filter all
requests and let the security interceptor’s object definition source determine
whether the filter has any work to do.

NOTE Throughout this section, you’ll add several <filter> and <filter-
mapping> elements to the web.xml file, all of them using FilterTo-
BeanProxy. Just because they all have the same filter class, do not
think of these filters as being replacements for each other. Although all
of these filters use the same FilterToBeanProxy class, they all serve
different purposes and delegate to different beans in the Spring con-
text. Unless otherwise stated, they are all required for Acegi web secu-
rity to function.

Suppose that a request is submitted for a page that is designated to be secure. If
the user has already been authenticated and granted the appropriate privileges,
then the security-enforcement filter will allow access to the page. But what if the
user hasn’t been authenticated yet?

11.4.3 Processing a login

As you’ll recall, the security-enforcement filter was wired with a reference to
authenticationEntryPoint. When the security-enforcement filter determines
that a user hasn’t been authenticated, it hands control over to an authentication
entry point.

 The primary purpose of an authentication entry point is to prompt the user to
log in. Acegi comes with three authentication entry points:

■ BasicProcessingFilterEntryPoint—Prompts the user with a browser-
driven login dialog by sending an HTTP 401 (Unauthorized) message to
the browser

■
 AuthenticationProcessingFilterEntryPoint—Redirects the user to an
HTML form-based login page

■ CasProcessingFilterEntryPoint—Redirects the user to a Yale CAS login page

Securing web applications 401

Regardless of which authentication entry point is used, the user will be prompted
to identify him- or herself by providing a username and password. When the user
submits the username and password, Acegi will need a way to give its authentica-
tion manager a chance to authenticate the user.

 The job of handling the authentication request falls to an authentication-processing
filter. Acegi comes with three authentication-processing filters:

■ BasicProcessingFilter—Handles Basic authentication requests
■ AuthenticationProcessingFilter—Handles form-based authentication

requests
■ CasProcessingFilter—Authenticates users based on the presence and

validity of a CAS service ticket

As you can see, the three authentication-processing filters mirror the three
authentication entry points. In fact, each authentication entry point is paired up
with an authentication-processing filter to make up the complete login picture.
This is illustrated in figure 11.8.

An authentication entry point starts the login process by prompting the user with
a chance to log in. After the user submits the requested information, an authen-
tication-processing filter attempts to authenticate the user (with help from the
authentication manager).

 Let’s take a closer look at how this works for each of the three types of authen-
tication available in Acegi, starting with Basic authentication.

Basic authentication

The simplest form of web-based authentication is known as Basic authentication.
The way Basic authentication works is that the server sends an HTTP 401 (Unau-
thorized) response to the web browser. When the browser sees this response, it

Figure 11.8 Authentication entry points and authentication-processing filters work together to
authenticate a web user.
realizes that the server needs the user to log in. So, the browser pops up a dialog
box to prompt the user for a username and password.

402 CHAPTER 11
Securing Spring applications

 When the user submits the login, the browser sends it back to the server to
perform the authentication. If authentication is successful, the user will be sent to
the desired target URL. Otherwise, the server may send back another HTTP 401
response and the browser will prompt the user again to log in.

 Using Basic authentication with Acegi starts with configuring a BasicProcessing-
FilterEntryPoint bean:

<bean id="authenticationEntryPoint" class="net.sf.acegisecurity.
 ui.basicauth.BasicProcessingFilterEntryPoint">
 <property name="realmName">
 <value>Spring Training</value>
 </property>
</bean>

BasicProcessingFilterEntryPoint has only one property. The realmName prop-
erty specifies an arbitrary string that is displayed in the login dialog to give users
some indication of what it is that they’re being asked to log into.

 After the user clicks the OK button in the login dialog, the username and pass-
word are submitted via the HTTP header back to the server. At that point
BasicProcessingFilter picks it up and processes it.

<bean id="basicProcessingFilter" class="net.sf.acegisecurity.
 ui.basicauth.BasicProcessingFilter">
 <property name="authenticationManager">
 <ref bean="authenticationManager"/>
 </property>
 <property name="authenticationEntryPoint">
 <ref bean="authenticationEntryPoint"/>
 </property>
</bean>

BasicProcessingFilter pulls the username and password from the HTTP
header and sends them on to the authentication manager, which is wired in
through the authenticationManager property. If authentication is successful, an
Authentication object is placed into the session for future reference. Other-
wise, if authentication fails, then control is passed on to the authentication
entry point (wired in through the authenticationEntryPoint property) to give
the user another chance.

 Like all of Acegi’s filters, BasicProcessingFilter needs a corresponding
FilterToBeanProxy configured in the application’s web.xml:

<filter>

➥

➥

 <filter-name>Acegi-Authentication</filter-name>
 <filter-class>net.sf.acegisecurity.
 util.FilterToBeanProxy</filter-class>➥

Securing web applications 403

 <init-param>
 <param-name>targetBean</param-name>
 <param-value>
 net.sf.acegisecurity.ui.basicauth.BasicProcessingFilter
 </param-value>
 </init-param>
</filter>
…
<filter-mapping>
 <filter-name>Acegi-Authentication</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>

Form-based authentication
Although BASIC authentication may be fine for simple applications, it has some
limitations. Primarily, the login dialog popped up by the browser is neither user-
friendly nor aesthetically appealing. Form-based authentication overcomes this
limitation and is more appropriate for most applications. Instead of being pre-
sented with a pop-up dialog to log into, a user is prompted to log into a web-
based form.

 Acegi’s AuthenticationProcessingFilterEntryPoint is an authentication
entry point that prompts a user with an HTML-based login form. You can config-
ure it in the Spring configuration file as follows:

<bean id="authenticationEntryPoint" class="net.sf.acegisecurity.
 ui.webapp.AuthenticationProcessingFilterEntryPoint">
 <property name="loginFormUrl">
 <value>/jsp/login.jsp</value>
 </property>
 <property name="forceHttps"><value>true</value></property>
</bean>

The loginFormUrl property is configured with the URL of a login form.
AuthenticationProcessingFilterEntryPoint will redirect the user to this URL for
the user to login. In this case, it redirects to a JSP file, which might contain the fol-
lowing HTML form:

<form method="POST" action="j_acegi_security_check">
 <input type="text" name="j_username">

 <input type="password" name="j_password">

 <input type="submit">
</form>

The login form must have two fields named j_username and j_password in which

➥

the user will enter the username and password. As for the form’s action attribute,
it has been set to j_acegi_security_check, which will be intercepted by Authenti-
cationProcessingFilter.

404 CHAPTER 11
Securing Spring applications

 AuthenticationProcessingFilter is a filter that processes form-based authen-
tication. It is configured in Spring’s configuration file as follows:

<bean id="authenticationProcessingFilter"
 class="net.sf.acegisecurity.

 ui.webapp.AuthenticationProcessingFilter">
 <property name="filterProcessesUrl">
 <value>/j_acegi_security_check</value>
 </property>
 <property name="authenticationFailureUrl">
 <value>/jsp/login.jsp?failed=true</value>
 </property>
 <property name="defaultTargetUrl">
 <value>/</value>
 </property>
 <property name="authenticationManager">
 <ref bean="authenticationManager"/>
 </property>
</bean>

The filterProcessesUrl property tells AuthenticationProcessingFilter which
URL it should intercept. This is the same URL that is in the login form’s action
attribute. It defaults to /j_acegi_security_check, but we’ve explicitly defined it
here to illustrate that you can change it if you’d like.

 The authenticationFailureUrl property indicates where the user will be sent
should authentication fail. In this case, we’re sending them back to the login
page, passing a parameter to indicate that authentication failed (so that an error
message may be displayed).

 Under normal circumstances, when authentication is successful, Authentica-
tionProcessingFilter will place an Authentication object in the session and
redirect the user to their desired target page. It knows what the target page is
because SecurityEnforcementFilter puts the original target URL into the HTTP
session before handing control over to the authentication entry point. When
AuthenticationProcessingFilter successfully authenticates the user, it retrieves
the target URL from the session and redirects the user to it.

 The defaultTargetUrl property defines what will happen in the unusual cir-
cumstance where the target URL isn’t in the session. This could happen if the user
arrived at the login screen through a bookmark or some other means without
having gone through SecurityEnforcementFilter.

 With the AuthenticationProcessingFilter defined in Spring, the final thing

➥

to do is to configure a FilterToBeanProxy that will delegate to the authentica-
tionProcessingFilter bean:

Securing web applications 405

<filter>
 <filter-name>Acegi-Authentication</filter-name>
 <filter-class>net.sf.acegisecurity.
 util.FilterToBeanProxy</filter-class>
 <init-param>
 <param-name>targetClass</param-name>
 <param-value>
 net.sf.acegisecurity.ui.webapp.AuthenticationProcessingFilter
 </param-value>
 </init-param>
</filter>
…
<filter-mapping>
 <filter-name>Acegi-Authentication</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>

CAS authentication

In section 11.2.4 you saw how to configure CasAuthenticationManager to
authenticate CAS service tickets against a CAS server. But a big unanswered
question left from that section is how the user is sent to the CAS login screen in
the first place.

 Acegi’s CasProcessingFilterEntryPoint is an authentication entry point that
sends the user to the CAS server to log in. You can declare it in the Spring config-
uration file as follows:

<bean id="authenticationEntryPoint" class="net.sf.acegisecurity.
 ui.cas.CasProcessingFilterEntryPoint">
 <property name="loginUrl">
 <value>https://localhost:8443/cas/login</value>
 </property>
 <property name="serviceProperties">
 <ref bean="serviceProperties"/>
 </property>
</bean>

The two properties of CasProcessingFitlerEntryPoint are fairly self-explanatory.
The loginUrl property specifies the URL of the CAS login page while the service-
Properties property is a reference to the same serviceProperties bean declared
in section 11.2.4.

 Whether or not the user successfully logs into CAS, you need to be certain that
the CasAuthenticationManager gets to try to authenticate the CAS ticket before

CasProcessingFilter is an authentica-

➥

➥

allowing access to the secured resource.
tion-processing filter that intercepts requests from the CAS server that contain the
ticket to be authenticated.

406 CHAPTER 11
Securing Spring applications

<bean id="authenticationProcessingFilter"
 class="net.sf.acegisecurity.ui.cas.CasProcessingFilter">
 <property name="filterProcessesUrl">
 <value>/j_acegi_cas_security_check</value>
 </property>
 <property name="authenticationManager">
 <ref bean="authenticationManager"/>
 </property>
 <property name="authenticationFailureUrl">
 <value>/authenticationfailed.jsp</value>
 </property>
 <property name="defaultTargetUrl">
 <value>/</value>
 </property>
</bean>

CasProcessingFilter has the same properties as AuthenticationProcessing-
Filter. But pay particular attention to the filterProcessesUrl property. Here it
is set to /j_acegi_cas_security_check. In section 11.2.4 we set the service prop-
erty of the serviceProperties bean to a URL that ends with the same pattern.

 After a successful login on the CAS server, CAS will redirect the user to a service
URL. In a non-Acegi application, this could be any arbitrary URL of the secured
application. But when securing an application with Acegi, you need to make sure
that the CasAuthenticationManager is invoked to handle the Acegi side of authen-
tication as well as look up the user’s authorities.

 On the CAS server side, the service property of the serviceProperties bean
tells CAS where to go after a successful login. On the client side, the filterPro-
cessesUrl property makes sure that CasProcessingFilter answers that request
and sends the CAS ticket on to CasAuthenticationManager for authentication.

11.4.4 Setting up the security context

During the course of a request, a user’s authentication information is carried in a
ContextHolder (which is effectively a ThreadLocal). Each filter in the Acegi filter
chain accesses the user’s authentication by retrieving it from the ContextHolder.

 But a ThreadLocal does not survive between requests. Therefore, Acegi has to
find some convenient place to store the user’s authentication so that it is available
when the next request comes through. That’s where Acegi’s integration filters go
to work.

 An integration filter starts its life by looking for the user’s Authentication

object in a well-known location—typically the HTTP session. It then constructs a
new ContextHolder object and drops the Authentication object into it.

Securing web applications 407

 After the request completes, the integration filter pulls the Authentication
object out of the ContextHolder and puts it back into the well-known location to
await another request.

 Acegi comes with several integration filters, but HttpSessionIntegration-
Filter is the one that is appropriate for most cases. It keeps the Authentication
object in the HTTP session between requests. You can configure it in the Spring
configuration file like this:

<bean id="integrationFilter" class="net.sf.acegisecurity.
 ui.webapp.HttpSessionIntegrationFilter"/>

Finally, you’ll need to configure a FilterToBeanProxy filter in web.xml that will
delegate to the integrationFilter bean:

<filter>
 <filter-name>Acegi-Integration</filter-name>
 <filter-class>net.sf.acegisecurity.util.FilterToBeanProxy
 </filter-class>
 <init-param>
 <param-name>targetClass</param-name>
 <param-value>net.sf.acegisecurity.ui.AutoIntegrationFilter
 </param-value>
 </init-param>
</filter>
…
<filter-mapping>
 <filter-name>Acegi-Integration</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>

It’s important that the <filter-mapping> entry be placed after all of the <filter-
mapping> entries for the other Acegi filters.

11.4.5 Ensuring a secure channel
There are certain pages within a secure web application that will carry sensitive
information. If this information is delivered across an insecure channel (such as
HTTP), a risk exists that some nefarious hacker will intercept the data and use it
for corrupt purposes.

 Common examples of this include a login page or any page where a user’s
credit card information is entered or displayed. Should the security of this infor-
mation be compromised, an individual’s personal data could be used to make
purchases or to assume identity of the user. It’s very important that users feel

➥

➥

➥

their information remains confidential or else they will no longer use your site.
Or worse, they may resort to litigation to ensure that you compensate them for
their loss.

408 CHAPTER 11
Securing Spring applications

 HTTPS helps prevent high-tech criminals from intercepting sensitive data
over the Internet by encrypting messages sent between server and browser. Using
HTTPS is often as simple as using “https://” in a URL instead of “http://”. How-
ever, this requires that you remember to add that “s” every time you link to a page
that displays sensitive data. It seems easy enough, but in our own experience,
we’ve forgotten that “s” more times than we can count.

 Acegi provides a solution through its ChannelProcessingFilter. Channel-
ProcessingFilter ensures that web application pages are delivered over the
proper channels (HTTP or HTTPS)—regardless of whether you remember to put
“https://” in the link URL.

 To use ChannelProcessingFilter, you must start by adding another FilterTo-
BeanProxy configuration to your web application’s web.xml file:

<filter>
 <filter-name>Acegi-Channel</filter-name>
 <filter-class>net.sf.acegisecurity.util.FilterToBeanProxy
 </filter-class>
 <init-param>
 <param-name>targetClass</param-name>
 <param-value>
 net.sf.acegisecurity.securechannel.ChannelProcessingFilter
 </param-value>
 </init-param>
</filter>
…
<filter-mapping>
 <filter-name>Acegi-Channel</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>

It’s very important that the <filter-mapping> for ChannelProcessingFilter
appear in the web.xml before any of the other <filter-mapping>s. That’s because
ChannelProcessingFilter needs to ensure that the request is being sent over the
proper channel before allowing any of the other filters to do their work.

 Once you’ve configured the FilterToBeanProxy in web.xml, you’ll need to
declare the delegate filter bean in the Spring configuration file:

<bean id="channelProcessingFilter" class="net.sf.acegisecurity.
 securechannel.ChannelProcessingFilter">
 <property name="filterInvocationDefinitionSource">
 <value>
 CONVERT_URL_TO_LOWERCASE_BEFORE_COMPARISON

➥

➥

 \A/secure/.*\Z=REQUIRES_SECURE_CHANNEL
 \A/login.jsp.*\Z=REQUIRES_SECURE_CHANNEL
 \A/j_acegi_security_check.*\Z=REQUIRES_SECURE_CHANNEL
 \A.*\Z=REQUIRES_INSECURE_CHANNEL

Securing web applications 409

 </value>
 </property>
 <property name="channelDecisionManager">
 <ref bean="channelDecisionManager"/>
 </property>
</bean>

The filterInvocationDefinitionSource property is where you define which
pages must be either secure or insecure. Just as with a FilterSecurityIntercep-
tor (section 11.4.2) a property editor interprets this property. The first line indi-
cates that the URL of the request should be converted to lowercase before
comparing with the patterns in the lines that follow.

 Each line after the first line associates a channel rule with a URL pattern. In
this case, we’re using regular expressions to define the URL patterns, but just as
with the security interceptors, you can also use Ant-like patterns by adding the
PATTERN_TYPE_APACHE_ANT directive. There are two channel rules that can be
applied to a URL pattern:

■ REQUIRES_SECURE_CHANNEL—Indicates that URLs matching the pattern must
be delivered over a secure channel (e.g., HTTPS)

■ REQUIRES_INSECURE_CHANNEL—Indicates that URLs matching the pattern
must be delivered over an insecure channel (e.g., HTTP)

In this case, we’ve declared that the login page, the authentication filter (/j_
acegi_security_check), and any page under the “/secure” path must be delivered
over a secure channel. Any other URL must be delivered over an insecure channel.

 ChannelProcessingFilter doesn’t work alone when enforcing channel security.
It collaborates with a ChannelDecisionManager, as referenced by the channel-
DecisionManager property, which will in turn delegate responsibility to one or
more ChannelProcessors. This relationship is reminiscent of the relationship
between an AccessDecisionManager and its AccessDecisionVoters. Figure 11.9
illustrates this relationship.

 The channel decision manager is supposed to be responsible for deciding
whether the channel of the request’s URL meets the channel security rules
(defined by the filterInvocationDefinitionSource property of the Channel-
ProcessingFilter). However, ChannelDecisionManagerImpl, Acegi’s only prepack-
aged implementation of ChannelDecisionManager, leaves that decision up to its
channel processors.
 ChannelDecisionManagerImpl iterates over its channel processors, giving them
an opportunity to override the channel of the request. A channel processor

410 CHAPTER 11
Securing Spring applications

examines the request and holds it up to the channel security rules. If the channel
processor takes issue with the request’s channel, then it will perform a redirect to
ensure that the request is sufficiently secure.

 Now that you see how all ChannelProcessingFilter works, it’s time to put all of
the pieces together. As you saw earlier, the channelProcessingFilter”bean’s
channelDecisionManager property is wired with a reference to a channelDecision-
Manager bean. The channelDecisionManager bean is declared as follows:

<bean id="channelDecisionManager" class= "net.sf.acegisecurity.
 securechannel.ChannelDecisionManagerImpl">
 <property name="channelProcessors">
 <list>
 <ref bean="secureChannelProcessor"/>
 <ref bean="insecureChannelProcessor"/>
 </list>
 </property>
</bean>

ChannelDecisionManagerImpl’s channel processors are provided through its
channelProcessors property. In this case, we’ve given it two channel processors,
which are declared with the following XML:

<bean id="secureChannelProcessor" class="net.sf.acegisecurity.
 securechannel.SecureChannelProcessor"/>
<bean id="insecureChannelProcessor" class=
 "net.sf.acegisecurity.securechannel.InsecureChannelProcessor"/>

SecureChannelProcessor considers at the channel security rule associated with
the request’s URL. If the rule is REQUIRES_SECURE_CHANNEL and the request is not
secure, then SecureChannelProcessor redirects to a secure form of the request.
For example, based on the value of filterInvocationDefinitionSource given to
the channelProcessingFilter bean:

Figure 11.9 A channel-processing filter relies on a channel decision manager to decide
whether to switch to/from a secure channel. If a switch is necessary, a channel processor
makes the switch.

➥

➥

■ http://www.springinaction.com/training/secure/editCourse.htm will be redi-
rected to https://www.springinaction.com/training/secure/editCourse.htm
because it matches a URL pattern that has a REQUIRES_SECURE_CHANNEL rule.

Securing web applications 411

■ http://www.springinaction.com/training/j_acegi_security_check will be redi-
rected to https://www.springinaction.com/training/j_acegi_security_check
because it matches a URL pattern that has a REQUIRES_SECURE_CHANNEL rule.

■ http://www.springinaction.com/training/displayCourse.htm will not be
redirected because it matches a URL pattern that does not have a
REQUIRES_SECURE_CHANNEL rule.

■ https://www.springinaction.com/training/j_acegi_security_check will be not
be redirected because it is already secure.

InsecureChannelProcessor is the functional opposite of SecureChannelProcessor.
Instead of ensuring that a request is delivered over a secure channel, it ensures
that a request is delivered over an insecure channel. For example:

■ https://www.springinaction.com/training/displayCourse.htm will be redirec-
ted to http://www.springinaction.com/training/displayCourse.htm because
it matches a URL pattern that has a REQUIRES_INSECURE_CHANNEL rule.

■ https://www.springinaction.com/training/j_acegi_security_check will not be
redirected because it matches a URL pattern that does not have a REQUIRES_
INSECURE_CHANNEL rule.

■ http://www.springinaction.com/training.displayCourse.htm will not be redi-
rected because it matches a URL pattern that has a REQUIRES_INSECURE_
CHANNEL and it is already insecure.

Before we move past Acegi’s support for web-based security, let’s see how to use
Acegi’s tag library to enforce security rules within a page in the web application.

11.4.6 Using the Acegi tag library
To call it a tag library is a bit of an overstatement. Actually, Acegi comes with only
one JSP tag: the <authz:authorize> tag.

 While Acegi’s security-enforcement filter will prevent users from navigating to
a page that they aren’t allowed to see, it is often best to not offer a link to the
restricted page in the first place. The <authz:authorize> tag helps to show or
hide web content based on whether the current user is authorized.

 <authz:authorize> is a flow-control tag that displays its body content when
certain security requirements are met. It has three mutually exclusive parameters:

■ ifAllGranted—A comma-separated list of privileges that the user must all

have in order for the tag’s body to be rendered

■ ifAnyGranted—A comma-separated list of privileges that the user must
have at least one of in order for the tag’s body to be rendered

412 CHAPTER 11
Securing Spring applications

■ ifNotGranted—A comma-separated list of privileges that the user must not
have any of in order for the tag’s body to be rendered

You can easily imagine how the <authz:authorize> tag may be used in a JSP to
limit users’ actions based on their granted authorities. For example, the Spring
Training application has a course detail page that displays information about a
course to the user. It would be convenient for an administrator to be able to nav-
igate directly from the course detail screen to a course edit screen to update the
course information. But you wouldn’t want that link to appear for anyone except
administrative users.

 Using the <authz:authorize> tag, you can prevent the link the course edit
screen from being rendered except when the user has administrative privileges:

<authz:authorize ifAllGranted="ROLE_ADMINISTRATOR">

 Edit Course

</authz:authorize>

Here we’ve used the ifAllGranted parameter, but since there’s only one authority
being checked, ifAnyGranted would’ve worked just as well.

 Web application security is only one side of Acegi’s functionality. Now let’s
examine the other side—securing method invocations.

11.5 Securing method invocations

Whereas Acegi used servlet filters to secure web requests, Acegi takes advantage of
Spring’s AOP support to provide declarative method-level security. This means
that instead of setting up a SecurityEnforcementFilter to enforce security, you’ll
set up a Spring AOP proxy that intercepts method invocations and passes control
to a security interceptor.

11.5.1 Creating a security aspect

Probably the easiest way to setup an AOP proxy is to use Spring’s BeanNameAuto-
ProxyCreator and simply list out the beans that you’ll want secured.3 For instance,
suppose that you’d like to secure the courseService and billingService beans:
3 This is only a suggestion. If you prefer one of the other mechanisms for proxying beans (as discussed
in chapter 4), such as ProxyFactorybean or DefaultAdvisorAutoProxyCreator, then you are wel-
come to use those here instead.

Securing method invocations 413

<bean id="autoProxyCreator" class="org.springframework.
 aop.framework.autoproxy.BeanNameAutoProxyCreator">
 <property name="interceptorNames">
 <list>
 <value>securityInterceptor</value>
 </list>
 </property>
 <property name="beanNames">
 <list>
 <value>courseService</value>
 <value>billingService</value>
 </list>
 </property>
</bean>

Here the auto-proxy creator has been instructed to proxy its beans with a single
interceptor, a bean named securityInterceptor. The securityInterceptor bean
is configured as follows:

<bean id="securityInterceptor" class="net.sf.acegisecurity.
 intercept.method.MethodSecurityInterceptor">
 <property name="authenticationManager">
 <ref bean="authenticationManager"/>
 </property>
 <property name="accessDecisionManager">
 <ref bean="accessDecisionManager"/>
 </property>
 <property name="objectDefinitionSource">
 <value>
 com.springinaction.springtraining.service.
 CourseService.createCourse=ROLE_ADMIN
 com.springinaction.springtraining.service.
 CourseService.enroll*=ROLE_ADMIN,ROLE_REGISTRAR
 </value>
 </property>
</bean>

MethodSecurityInterceptor does for method invocations what FilterSecurity-
Interceptor does for servlet requests. That is, it intercepts the invocation and
coordinates the efforts of the authentication manager and the access decision
manager to ensure that method requirements are met.

 Notice that the authenticationManager and accessDecisionManager proper-
ties are the same as for FilterSecurityInterceptor. In fact, you may wire the
same beans into these properties as you did for FilterSecurityInterceptor.

MethodSecurityInterceptor also has an objectDefinitionSource property just

➥

➥

➥

➥

as FilterSecurityInterceptor does. But, although it serves the same purpose
here as with FilterSecurityInterceptor, it is configured slightly different.

414 CHAPTER 11
Securing Spring applications

Instead of associating URL patterns with privileges, this property associates
method patterns with privileges that are required to invoke the method.

 A method pattern includes the fully qualified class name and the method
name of the method(s) to be secured. Note that you may use wildcards at either
the beginning or the end of a method pattern to match multiple methods.

When a secured method is called, MethodSecurityInterceptor will determine if
the user has been authenticated and has been granted the appropriate authori-
ties to call the method. If so, then the call will proceed to the target method. If
not, an AcegiSecurityException will be thrown. More specifically, an Authenti-
cationException will be thrown if the user cannot be authenticated. Or, if the
user hasn’t been granted authority to make the call, an AccessDeniedException
will be thrown.

 In keeping with Spring’s exception philosophy, AcegiSecurityException is an
unchecked exception. The calling code can either catch or ignore the exception.

 Writing method security attributes in the Spring configuration file is only one
way to declare method-level security. You’ve already seen how to use Jakarta
Commons Attributes to declare transaction policies (chapter 4) and URL map-
pings (chapter 8). Now let’s look at how to use Jakarta Commons Attributes to
declare security attributes.

11.5.2 Securing methods using metadata

As with transactions and handler mappings, the first thing you must do is to
declare a metadata implementation to tell Spring how to load metadata. If you’ve
not already added a CommonsAttributes bean to your application context, you’ll
need to add one now:

<bean id="attributes"

 class="org.springframework.metadata.commons.CommonsAttributes"/>

Next, you’ll need to declare an object definition source. In section 11.5.1, you
defined an object definition source by setting the objectDefinitionSource

Securing method invocations 415

property with a String that mapped security attributes to methods. But this time
you’re going to declare security attributes directly in the secured object’s source
code. Acegi’s MethodDefinitionAttributes is an object definition source that
retrieves its security attributes from the secured object’s metadata:

<bean id="objectDefinitionSource" class="net.sf.acegisecurity.
 intercept.method.MethodDefinitionAttributes">
 <property name="attributes"><ref bean="attributes"/></property>
</bean>

The attributes property of MethodDefinitionAttributes is wired with a refer-
ence to the attributes bean so that it will know to pull security attributes using
Jakarta Commons Attributes.4

 Now that the objectDefinitionSource is configured, wire it into the object-
DefinitionSource property of MethodSecurityInterceptor (replacing the String
definition from section 11.5.1):

<bean id="securityInterceptor" class="net.sf.acegisecurity.
 intercept.method.MethodSecurityInterceptor">
…
 <property name="objectDefinitionSource">
 <ref bean="objectDefinitionSource"/>
 </property>
</bean>

Now you’re ready to start tagging your code with security attributes. The only
security attribute you need to know is SecurityConfig, which associates a privi-
lege with a method. For example, the following snippet of code shows how to tag
the enrollStudentInCourse() method from CourseService to require either
ROLE_ADMIN or ROLE_REGISTRAR privileges:

/**
 * @@net.sf.acegisecurity.SecurityConfig("ROLE_ADMIN")
 * @@net.sf.acegisecurity.SecurityConfig("ROLE_REGISTRAR")
 */
public void enrollStudentInCourse(Course course,
 Student student) throws CourseException;

Declaring these security attributes on enrollStudentInCourse() is equivalent to
the declaration of the objectDefinitionSource as defined in section 11.5.1.

➥

➥

4 When Spring supports JSR-175 annotations, you will wire the attributes property with a different
metadata implementation.

416 CHAPTER 11
Securing Spring applications

11.6 Summary

Security is a very important aspect of many applications. The Acegi Security
System provides a mechanism for securing your applications that is based on
Spring’s philosophy of loose coupling, dependency injection, and aspect-
oriented programming.

 You may have noticed that this chapter presented very little Java code. We
hope you weren’t disappointed. The lack of Java code illustrates a key strength of
Acegi—loose coupling between an application and its security. Security is an
aspect that transcends an application’s core concerns. Using Acegi you are able to
secure your applications without writing any security code directly into your
application code.

 Another thing you may have noticed is that much of the configuration
required to secure an application with Acegi is ignorant of the application that it
is securing. The only Acegi component that really needs to know any specifics
about the secured application is the object definition source where you associate a
secured resource with the authorities required to access the resource. Loose cou-
pling runs both ways between Acegi and its applications.

Spring setup
417

418 APPENDIX A
Spring setup

If you are reading this book, you are probably doing so because you want to
develop your own Spring application. We would be remiss if we did not show you
how to get your project up and running. So in this appendix we are going to show
you how to begin building your own Spring application, starting with downloading
Spring itself.

A.1 Downloading Spring

Spring comes in the form of one JAR file or a handful of JAR files depending on
how you choose to deploy it. To begin using Spring in your application, you must
do the following:

1 Download the latest version of Spring from http://www.springframe-
work.org. In this book, we assume that you are using the 1.1.3 version of
Spring, unless otherwise noted. You’ll be given the choice of two zip files:
one with dependencies and one without. The one with dependencies is
much larger, but includes all of the third-party dependency libraries that
Spring relies on. We recommend the one with dependencies, simply
because you won’t need to hunt down and download any other JAR in
order to get started.

2 Unzip the zip file downloaded in step 1 to a directory on your computer
(for example, C:\ on Windows or /opt/ on UNIX).

3 Choose the distribution JAR file(s) you will use from the dist directory
(for example, C:\spring-framework-1.1.3\dist on Windows or /opt/spring-
framework-1.1.3/dist on Unix).

4 Add the Spring JAR file and its dependencies to your build’s class path
and your application’s class path.

A.2 Choosing a distribution

Spring’s libraries are distributed in eight JAR files, as listed in table A.1.

Table A.1 Spring JAR distributions

JAR File Purpose Depends on

spring-core.jar The core Spring container and utilities. Commons logging. Optional: Log4J
spring-aop.jar Spring’s AOP framework and metadata
support.

spring-core.jar, AOP alliance. Optional:

CGLIB, Commons Attributes

continued on next page

Setting up your project 419

The choices may seem a bit overwhelming, but it’s really quite simple. Each of
the first seven JAR files from table A.1 correlate to each of Spring’s modules, as
discussed in chapter 1. Realizing that not every Spring-enabled application will
necessarily use every part of Spring, the Spring team made the smart decision to
break up the distribution into seven parts and allow you to choose the parts
appropriate for your application. For example, if your application will only use
the application context and AOP features in Spring, you will only need spring-
core.jar, spring-context.jar, and spring-aop.jar.

 In the event that you will use all of the Spring framework in your application,
they’ve also packaged the whole framework in one convenient spring.jar file. You
may choose to use this JAR file while learning Spring to avoid the inconvenience
of having to keep adding and removing module JAR files from your class path.
The remaining instructions will assume that this is the choice you have made.

A.3 Setting up your project

Once you have downloaded Spring, the next step is to set up the directory struc-
ture for your project. If you are like most developers, you probably have a

spring-context.jar Application context, validation frame-
work, templating support (Velocity,
FreeMarker), remoting (JAX-RPC, Hes-
sian, Burlap), EJB support, and
scheduling.

spring-core.jar. Optional: Velocity,

FreeMarker, JavaMail, EJB, JAX-RPC,

Hessian, Burlap, Quartz

spring-dao.jar JDBC and DAO support. Transaction
infrastructure.

spring-core.jar. Optional: spring-aop.jar,

JTA

spring-orm.jar Support for ORM frameworks, including
Hibernate, JDO, and iBatis.

spring-dao.jar. Optional: Hibernate, JDO,

iBATIS

spring-web.jar Web application context and utilities.
Multipart file upload support.

spring-context.jar, servlet. Optional:

Commons FileUpload, COS

spring-webmvc.jar Spring’s MVC framework. spring-web.jar. Optional: JSP, JSTL, Tiles,

iText, POI

spring.jar The entire Spring framework, including
everything in the other JAR files.

All of the above

Table A.1 Spring JAR distributions (continued)

JAR File Purpose Depends on
project structure you are already comfortable with. If you do, by all means stick
to it. For this example, we are going to build a web application with the follow-
ing project structure:

420 APPENDIX A
Spring setup

■ /src/java—All Java source code files
■ /src/webapp—All web application files, including configuration files and JSPs
■ /lib—Any third-party JAR files not included in the Spring distribution
■ /target—Our WAR file once it is created
■ /target/classes—Our class files once they are compiled

That should do it. We are now ready to set up our build.

A.4 Building with Ant

Most Java applications are built with Apache Ant. If you’re using Ant to build
your Spring project, you’ll need to download the Spring framework for yourself
(as described in section A.1) and be sure to add the Spring dependency JAR files
to the appropriate places in your Ant’s build file.

 We recommend declaring an Ant <path> element that will contain your appli-
cation’s dependencies, including the Spring JAR files. Listing A.1 shows a small
section of an Ant build file that manages Spring dependencies this way.

<project name="training" default="init">
 <property name="spring.home"
 location="/opt/spring-framework-1.1.3"/>
 <property name="target.dir" location="target"/>
 <property name="classes.dir" location="${target.dir}/classes"/>
 <property name="src.dir" location="src"/>
 <property name="java.src.dir" location="${src.dir}/java"/>
 <property name="webapp.dir" location="${src.dir}/webapp"/>
 <property name="app.lib.dir" location="lib"/>
 <property name="spring.lib.dir" location="${spring.home}/dist"/>
 <property name="spring.depends.dir"
 location="${spring.home}/lib"/>

 <path id="dependency.path">
 <fileset dir="${spring.lib.dir}" includes="*.jar"/>
 <fileset dir="${spring.depends.dir}" includes="**/*.jar"/>
 <fileset dir="${app.lib.dir}" includes="*.jar"/>
 </path>

 <target name="compile">
 <mkdir dir="${classes.dir}"/>
 <javac destdir="${classes.dir}"

Listing A.1 Building a Spring application with Ant

Define Spring
distribution location

Include Spring
dependencies
 classpathref="dependency.path">
 <src path="${java.src.dir}"/>
 </javac>
 </target>

Set class path
for javac

Building with Ant 421

 <target name="war" depends="compile">
 <war destfile="${target.dir}/${ant.project.name}.war"
 webxml="${webapp.dir}/web.xml">
 <lib dir="${spring.lib.dir}"/>
 <lib dir="${app.lib.dir}"/>
 <classes dir="${classes.dir}"/>
 </war>
 </target>

…

</project>

The Ant build files that accompany the example code for this book will follow
this pattern for managing Spring dependencies.

 With your build file now in place, there is one final thing you will want to do.
When you first start using Spring, one feature you will definitely find useful is
logging. The easiest way to set this up is to include a simple log4j configuration
file. Assuming the project structure described above, you would create a file
located at /src/webapp/WEB-INF/classes/log4j.properties. Listing A.2 shows a sim-
ple configuration that logs all Spring messages to the console.

log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d %p %c - %m%n
log4j.rootLogger=INFO, stdoutlog4j.logger.org.springframework=DEBUG

Your project is now set up and ready to go. All you have to do is start coding, put
Ant to work, and you will have a working Spring application in no time.

Listing A.2 Simple log4j.properties file

Include Spring
dependencies

Spring-related projects
422

AppFuse 423

A common theme in the open source world is successful projects beget more suc-
cessful projects. This is especially true for frameworks. Once a framework hits criti-
cal mass and gains wide adoption, supporting projects spring up as complements.

 Spring is no different. Over the last year many projects have been developed
that are related to Spring. This appendix looks at a few of these projects. This is
by no means an exhaustive list of Spring-related projects, but we do examine the
projects we feel you will find most beneficial.

B.1 AppFuse

If you have not yet started developing your own Spring application, you may be
chomping at the bit to do so. Starting an application from scratch is not easy,
especially a full-blown enterprise Java application. It sure would be nice if there
were an easy way to bootstrap an application.

 Fortunately, Matt Raible was thinking the same thing when he created App-
Fuse. AppFuse is a tool for kick-starting a web application. As its name suggests,
it is the fuse you ignite to get your project up and going with a bang. But instead
of the fuse being attached to a stick of dynamite, it is a fully configured project
just waiting for you to give it some code.

 To begin using AppFuse, you will need to download it from http://raiblede-
signs.com/wiki/Wiki.jsp?page=Downloads. As of this writing, AppFuse 1.7 was the
latest release.

 Once you download AppFuse itself, you will also need a few other applica-
tions that are required to build and run your Spring application:

■ J2SE 1.4+
■ Ant 1.6.2+
■ MySQL 3.23.x+
■ Tomcat 4.1.x+
■ JUnit 3.8.1
■ An SMTP mail server

This will provide the infrastructure that will support your web application. All
that’s left is to add your code—and this is where AppFuse comes to the rescue. As
we mentioned, AppFuse comes with a project structure that will contain your files
and an Ant build file ready to compile your classes, execute test cases, and

deploy your application.

 To help with development, the AppFuse website (https://appfuse.dev.java.net/)
provides step-by-step tutorials for creating classes for all layers of your application.

424 APPENDIX B
Spring-related projects

Whether you are using Hibernate or iBATIS, Struts or Tapestry, AppFuse will
guide you from writing the actual code, to creating test cases, to editing configu-
ration files, to wiring everything together in Spring. When it comes to creating
enterprise applications quickly, AppFuse is a quick fuse indeed.

B.2 Rich Client Project

As you probably have figured out from reading this book, a good portion of the
Spring framework is dedicated to simplifying server-side development. The Rich
Client Project (RCP) addresses the other side of the equation by creating a frame-
work for developing applications for the client side.

 The goal of the RCP is to provide a framework for developers to follow best
practices and create Swing applications quickly. Specifically, it aims to

■ Provide a means to configure Swing actions in a central location and exter-
nal to the actual Swing code.

■ Provide integration points with existing rich-client projects (much like
Spring’s support for existing projects, such as Hibernate). This includes inte-
gration with two existing layout managers: jgoodies-forms and TableLayout.

■ Provide a set of common support classes for common rich client require-
ments, such as dialogs, wizards, progress bars, and tables.

As of the publishing of this book, RCP was still in the alpha stage. But develop-
ment is continuing and you can keep an eye on this project at http://sourceforge.
net/projects/spring.

B.3 Spring.NET

Believe it or not, Java is not the only technology out there. Other languages are
flourishing in the enterprise development space. In fact, there is also a com-
pany in Redmond, Washington, that is staying competitive with a platform of
their own. In case you have not seen through our sarcasm yet, we are talking
about Microsoft. Specifically, we are referring to their language that mirrors
Java: C#.NET.

 Recognizing the benefits of a lightweight framework like Spring, some enter-
prising (pun intended) developers have created a similar framework for the
.NET platform, aptly named Spring.NET. The roadmap for Spring.NET is to pro-

vide core container services first—namely inversion of control. This will be fol-
lowed by AOP support and enterprise services.

Spring.NET 425

 As of the publishing of this book, Spring.NET has not had a production
release. However, in August 2004, the first release candidate was published:
Spring.NET 0.6. The features already available include

■ Constructor and setter dependency injection
■ Singleton and prototype bean support
■ Autowiring
■ .NET application configuration file support

Spring.NET is still in its early stages but is being actively developed. You can find
out the latest status of Spring.NET at its cleverly named website: http://www.
springframework.net.

S

#
#
*
+
.
.
\
_

N

8

A

A

A

A

A

index

ymbols

springBind 326, 331
springBindEscaped 327
, regular expression 110
, regular expression 109

, regular expression 109
NET 195, 226
 , regular expression 110
target 297

umerics

0–20 rule 144

bstractCommandController
example of 287
for forms 290
in Controller hierarchy 283
when to use 285
wiring 288

bstractController
example of 285
for forms 290
implementing 286
in Controller hierarchy 283
when to use 285
wiring 287

bstractExcelView
buildExcelDocument 339
content type 340
decoupling from model 340
described 338

AbstractJmsMessageDrivenBean 232
AbstractMessageDrivenBean 232
AbstractPdfView 310, 341

example of 341
AbstractStatefulSessionBean 232
AbstractStatelessSessionBean 232
AbstractWizardFormController

_cancel 298
_finish 298
_target 297
example of 295
getInitialPage() 297
getTargetPage() 297
in Controller hierarchy 283
motivations 295
pages 296
processCancel() 298
processFinish() 296–297
validatePage() 299
validating 299
when to use 285

AcceptAnyCasProxy, defined 387
access decision manager, explained 370
AccessDecisionManager

decide() 389
defined 389
implementations of 389
supports() 389

AccessDecisionVoter
defined 390
See also RoleVoter

Acegi authentication-processing filter 401
Acegi Security System 31

authentication entry point 400
enforcing security 397
427

example of 338
bstractFormController
in Controller hierarchy 283
when to use 285

fundamentals of 369
overview of 368
security interceptor 369
servlet filters 393

428 INDEX

ACID 176
Action, Struts class 38
ActionForm, compared to MVC command 289
ActionSupport

benefits 349
defined 349
drawbacks 349
example of 349

advice
types 97
wiring 100

advisor 107, 127
AffirmativeBased 390
after advice 101
afterPropertiesSet() 58
afterReturning() 101
AfterReturningAdvice 98, 101–102

compared to MethodInterceptor 103
example of 102

afterThrowing() 104
annotations 11
Ant

<javac> 200
with Jakarta Commons Attributes 199

AOP 4, 9, 57
and declarative transactions 183
aspects as a blanket 26
cross-cutting concerns 25
declarative transactions 32
for reuse 93
frameworks 95
illustrated 95
in the enterprise 30
orthogonal services 28
proxying classes 96
separation of concerns 25
special syntax 96
Spring module 10
Spring’s implementation 95
terms 93

AOP Alliance 10
benefits of 97
defined 97
MethodInterceptor 104

AopContext 122
Apache OJB. See OJB
applets 4
application server 241
ApplicationContext 44, 46, 90

bean lifecycle 49
getBean() 47

publishing events 46
singleton beans 47

ApplicationContextAware 50, 87, 89
drawback of using 88, 90
setApplicationContext() 89

ApplicationContextAwareProcessor 76
See also ApplicationContextAware

ApplicationContextFactory 46
ApplicationEvent 85–86
ApplicationListener 85–87, 361

onApplicationEvent() 86
ApuKwikEMart 98
around advice 102
aspect

as Java class 95
defined 93

AspectJ 96
field joinpoints 97

Aspect-Oriented Programming. See AOP
asynchronous operation 256
atomic 176
attributes 195
AttributesTransactionAttributeSource

Jakarta Commons Attributes 197
wiring 196

Auditable 115
AuditableMixin 116
AuthByAuthenticationProvider

defined 372
See also ProviderManager

authentication
entry point diagrammed 401
using database 373

authentication manager 370
authentication processing filter

diagrammed 401
AuthenticationDao 375

See also DaoAuthenticationProvider
AuthenticationManager 371

See also ProviderManager
AuthenticationProcessingFilter 401
AuthenticationProcessingFilterEntryPoint 400

wiring 403
AuthenticationProvider

authenticate() 373
implementations of 372

autodetect, autowiring type 70
autoproxing 124
autowiring 69

autodetect 70–71
by deafult 72
getMessage() 85
implementations of 44, 46
lazy loading 47
publishEvent 87

byName 70–71
byType 70–71
constructor 70–71
handling ambiguities 71

a

A
A

B

B
B
B

B
B
B

B
B

B

b
B
B
B
b

b
b
b
<
B
B

B

INDEX 429

utowiring (continued)
motivations 72
using with caution 72
with explicit wiring 72
with HibernateTemplate 162

valon 38
WT, compared to JSF 357

abel Fish 234
ad Thing 134
aseCommandController
in Controller hierarchy 283
when to use 285

aseEngine, replacing 353
asePage, example of 355
asic authentication
BasicProcessingFilter 402
BasicProcessingFilterEntryPoint 402
defined 401

asicDataSource 138
asicProcessingFilter 401
wiring 402

asicProcessingFilterEntryPoint 400
wiring 402

atch updates 148
atchPreparedStatementSetter 148
atman 142
EA WebLogic 274
ean 54, 61
<constructor-arg> subelement 65
defining 55
destroy-method attribute 57
init-method attribute 57
parent attribute 202
post-processing 74
<property> subelement 59, 61
singleton attribute 56

ean attribute 202
ean inheritance 202
ean lifecycle 47
bean> 54–57, 59, 61, 65, 202
eanCounter example 77
eanFactory 10, 44, 90
addBeanPostProcessor() 76
bean lifecycle 47
creating 45
dependency injection 45
getBean 15
getBean() 45

BeanFactoryPostProcessor 76
implementations of 77
postProcessBeanFactory() 77
registering 77

BeanNameAutoProxyCreator 124–125
BeanNameAware 47, 87

drawback of using 88
setBeanName() 88
use of 89

BeanNameHandlerMapping, defined 279
BeanNameUrlHandlerMapping

as default HandlerMapping 277
drawbacks 280
example of 280
when to define 280
with Struts 351

BeanNameViewResolver
compared to ResourceBundleViewResolver 311
compared to XmlFileViewResolver 311
defined 308
wiring 310

BeanPostProcessor 48, 74
DefaultAdvisorAutoProxyCreator 127
example of 74
implementations of 76
postProcessAfterInitialization() 74
postProcessBeforeInitialization() 74
registering 76

<beans> 54, 72
<default-autowire> attribute 72

before advice 99
before() 99
BeforeAdvice 98
bike riding 156
BindStatus 315
blue pill 87
Burlap 209, 218, 220

choosing 219
compared to SOAP 218
compared to XML-RPC 218
exporting in Spring 223

BurlapProxyFactoryBean 219
BurlapServiceExporter 223
byName, autowiring type 70
ByteMessage 265
byType, autowiring type 70

C

caching 156
CallableStatementCallback, example of 152
implementations of 44
eanFactoryAware 48, 87, 89
drawback of using 88, 90
setBeanFactory() 89

callback 182
CAS

benefits of 386
CasAuthenticationProvider 373

430 INDEX

CAS (continued)
CasProcessingFilterEntryPoint 405
history 385
proxy services 387
reference 385
workflow 385

CasAuthenticationProvider
defined 372, 386
wiring 386

CasByAuthenticationProvider.
See ProviderManager

cascading 156
CasProcessingFilter 401
CasProcessingFilterEntryPoint 400

wiring 405
CasProxyTicketValidator 386
Caucho Burlap. See Burlap
Caucho Hessian. See Hessian
Caucho Technology 218
Central Authentication Service. See CAS
CGLIB 122

JAR file 96
to create AOP proxy 96

checking luggage 139
Class, wiring with ClassEditor 80
ClassEditor 80
ClassFilter 106, 113

ClassFilter.TRUE 106
ClassPathXmlApplicationContext 46

compared to
FileSystemXmlApplicationContext 47

creating 47
defined 54

CleanupFailureDataAccessException 136
CMT 177, 206

compared to
NameMatchTransactionAttributeSource 194

transaction propogation 186
collections, wiring 61
command controller 287
CommonsAttributes 282

described 197
wiring 197
See also DefaultTransactionAttribute;

RuleBasedTransactionAttribute
CommonsPathMapHandlerMapping

defined 280
wiring 281

compile-time weaving 94
ComponentControllerSupport, example of 336
ComposablePointcut 113

with PreparedStatementCreator 146
with transactions 179

connection pool 138
ConsensusBased 390
consistent 176
constructor injection 64–65

advantages 65, 68
ambiguous arguments 66
compared to setter injection 68
disadvantages 69
example of 52
motivations to use 54
UnsatisfiedDependencyException 67
when to use 69

constructor, autowiring type 70
<constructor-arg>

<bean> subelement 65
choosing order vs type 68
index attribute 67
order arguments 67
resolving by type 67
typeattribute 67

consumer, message 256
container-managed transactions. See CMT
content type 340
ContextClosedEvent 85
ContextLoaderListener 274

configuring context locations 274
configuring in web.xml 274
when to use 274
with Acegi 397
with JSF 360
with Tapestry 354
with WebWork 363

ContextLoaderPlugIn
configuring 348
when delegating 350

ContextLoaderServlet 274
configuring context locations 274
configuring in web.xml 274
when to use 274
with Acegi 397
with Tapestry 354
with WebWork 363

ContextRefreshedEvent 85
ControlFlowPointcut 111–112
Controller 225

compared to HttpServlet 276
compared to Struts Action 276
described 276
hierarchy 283–284
Connection 141
commit() 179
obtaining with Spring 137
rollback() 179

implementing 283
in request lifecycle 271
when to use 285
wiring 276

C
c
C
c

c
c
C

c

C
C
C

D

D

D

D
d
D

D
d
d

d

INDEX 431

ORBA 212
orrupt data 134
osMailSenderImpl 245
oupling

example of 20
static coupling 19
See also decoupling

redit card 209
ron 253
ronTriggerBean 252–253, 255
example of BeanNameAware 88
time elements 253

ross-cutting concerns
defined 92
illustrated 92
modularizing 93

ruise, Tom 127
ustomDateEditor 80
ustomEditorConfigurer 77, 82, 90
registerCustomEditor() 82

AO
accessing with interfaces 134
advantages of 134
callback 140
defined 134
template 140
unit testing 134

aoAuthenticationProvider
authenticationDao 375
caching 381
compared to

PasswordDaoAuthenticationProvider 374
defined 372
diagram of 374
encrypting passords 379
passwordEncoder 380
userCache 381
wiring 374
See also ProviderManager

aoCasAuthoritiesPopulator, wiring 388
ata access object. See DAO
ataAccessException
as unchecked exception 136
benefits of 135
hierarchy 136

ataAccessResourceFailureException 136
atabase driver 149
atabase operation object 152

DataFieldMaxValueIncrementer
defined 155

DataIntegrityViolationException 136
DataRetrievalFailureException 136
DataSource

creating connection pool 138
in JNDI 137
JNDI lookup 241
transactions 178
with DataSourceTransactionManager 179
with JdbcTemplate 144
with LocalPersistenceManagerFactoryBean 164
with LocalSessionFactoryBean 160
with MappingSqlQuery 154
with OJB 169

DataSourceTransactionManager
defined 178
when to use 178
wiring 178

Date, wiring with CustomDateEditor 80
DeadlockLoserDataAccessException 136
declarative transactions 7, 177

example of 32
decoupling, with interfaces 19

See also coupling
default autowire 72
DefaultAdvisorAutoProxyCreator 124, 126, 128, 205

for transactions 203
defaultDestination 260
DefaultIntroductionAdvisor 119
DefaultTransactionAttribute

example of 190, 198
wiring 190

DelegatingActionProxy
benefits of 351
configuring 351
drawbacks 351
Spring configuration file 351

DelegatingIntroductionInterceptor 117–118
DelegatingRequestProcessor

described 352
shortcut 352

DelegatingTilesRequestProcessor 352
delegation, for reuse 92
dependency injection 45

compared to JNDI 243
defined 16
in JSF 359

deserialization 47, 120
Destination 260
destroy 49
compared to JdbcTemplate 154
compiling 153
when to use 154

atabase, for authentication 373

destroy(), DisposableBean method 58
destroy-method, <bean> attribute 57

benefits of 58
example of 57

432 INDEX

destruction 57
dirty read 186
DispatcherServlet 221, 225

as front controller 271
configuring in web.xml 272
in request lifecycle 271
naming 272

DisposableBean 49, 58
when to use 58

distributed transactions, Spring
support 177

doclet tags 197
class level 198
method level 198
parsing 199

DriverManagerDataSource 139, 244
duplicate code 24
durable 176
dynamic pointcut 94, 106, 111, 113

performance considerations 113
dynamic proxies 122

E

eager fetching 156
ehcache 381
EhCacheBasedUserCache 381
EJB 8, 206, 232

accessing with Spring 226
as a specification 34
CMT 177
compared to JDO 164
compared to Spring 33
complexities 6, 35
declarative security 31
declarative transactions 31, 183
deployment descriptor 4–5
developing with 5
distributed components 4
EJBHome 7
Entity Beans 36
feature comparisons 34
home interface 5, 227, 229
integration 10
JNDI lookup 7
local interface 5, 228
proxying 228
remote interface 228
remote transactions 35
remoting 208–209, 211
rollback behavior 193

transaction propogation 186
transaction support 177

EjbServiceExporter 232
e-mail

sending with Spring 244
Spring support 241
template message 245

encryption, salt source 380
Enterprise JavaBeans. See EJB
entity beans 36

compared to JDBC 141
error messages, JSP 316
Errors 292
event handling 85
event publishing 86
exception handling in DAO templates 140
Expert One-on-One, J2EE Design and

Development 8

F

façade pattern 178, 232
FacesServlet, servlet filters 362
FacesSpringVariableResolver

described 359
features 360
wiring 360

factory pattern 45
File wiring with FileEditor 80
FileEditor 80
FileSystemXmlApplicationContext 46

compared to ClassPathXmlApplicationContext 47
creating 46
defined 54

FilterSecurityInterceptor 398
See also SecurityEnforcementFilter

FilterToBeanProxy 395
bean reference 396
configuring 395–396
explained 395
in general use 397
in web.xml 399
targetClass 396

firewall
with Burlap 223
with Hessian 223
with RMI 217

flexible design 134
Ford, Henry 320
foreach 322
form validation 292
security 4
services 6
specification 4
Spring support classes 232

forms
cancelling 298
handling 289
multiple pages 294

F

F

F

F

F
F
f
F

G

G
g
G
G

H

H

h
h
H

H

INDEX 433

owler, Martin 16
Patterns of Enterprise Application Architecture 176

reeMarker 10, 307, 320
compared to JSP 320
compared to Velocity 327
configuring properties 329
exposing model 330
features 327
macros 331
resolving views 330
Spring integration 329
template example 328
template path 329
web site 329
with InternalResourceViewResolver 308

reeMarkerConfigurer
compared to VelocityConfigurer 329
freemarkerSettings 329
template_update_delay 329
templateLoaderPath 329–330
wiring 329

reeMarkerViewResolver
exposeMacroHelpers 331
exposeRequestAttributes 330
exposeSessionAttributes 330
wiring 330

requentCustomerAdvice 109
riends 368
ront controller 271
udd, Elmer 74

ET 290
lobal 353
oldbergRube 270
ood Thing 134

andlerMapping
described 279
implementations of 279
in request lifecycle 271
ordering 282
using multiple implementations 282

andling events 85
eavyweight containers 6
ello World 12
GreetingService 12
GreetingServiceImpl 13

Controller 221
exporting with Spring 220
writing a service 220

HessianProxyFactoryBean 219
HessianServiceExporter 221

compared to RmiServiceExporter 221
HessianServlet 220
Hibernate 11, 40, 120, 134

caching 157
compared to Entity Beans 36
compared to iBATIS SQL Maps 166
compared to JDBC 141
configuring 158
distributed caching 157
eager fetching 157
features 157
lazy loading 157
mapping files 158, 160–161
properties 160
Spring abstraction layer 241
Spring transaction support 177
transactions 178–180

Hibernate in Action 157
HibernateCallback

as inner class 162
defined 162
using implicitly 162

HibernateDaoSupport, example of 163
HibernateException 135
HibernateTemplate

autowiring 162
convenience methods 162
find() 163
load() 162
queries 163
update() 163
wiring 161
with HibernateCallback 162
with HibernateDaoSupport 163

HibernateTransactionManager 33
defined 178
wiring 179

Hitchhikers Guide to the Galaxy, The 234
HiveMind 38
HQL 163
HTTP

Basic authentication 401
challenges of using 270
GET 290
POST 290

HTTP invoker 208, 224

XML configuration 13
essian 209, 218, 220
choosing 219
compared to RMI 218

exposing services 225
limitation 226

HTTP tunneling 218
HttpInvokerProxyFactoryBean 224

434 INDEX

HttpInvokerServiceExporter 225
HttpServlet 111

compared to Controller 276
HttpSession, CAS tickets 388
hubris 244
Hunter, Jason 245
Husted, Ted 39
Hypersonic, generating sequences 155

I

I18N 10, 12, 46
configuring with MessageSource 83

iBATIS SQL Maps 11, 40
compared to Hibernate 166
configuring 167
mapping file 167
web site 166

IBM WebSphere 274
IDL 218
impatience 244
implementsInterface() 115, 117
IncorrectUpdateSemanticsDataAccessException

136
index, <constructor-arg> attribute 67
inheritance, for reuse 92
initialization 57
InitializingBean 58

DAO support classes 141
when to use 58

init-method, <bean> attribute 57
InMemoryDaoImpl

limitations of 376
passwords 376
roles 376
userMap 375
usernames 376
when to use 375
wiring 375
See also AuthenticationDao

inner beans 61
int, querying for 151
interceptor. See around advice
interceptorNames 122–123
interface21 8
InternalPathMethodNameResolver 303
InternalResourceViewResolver

as default ViewResolver 277
compared to VelocityViewResolver 323
defined 307
viewClass 310, 335

introduction 97, 115
compared to other advice types 105
considerations 120
defined 94

IntroductionAdvisor 119
IntroductionInterceptor 117, 119
IntroductionMethodInterceptor 115

example of 116
InvalidDataAccessApiUsageException 137
InvalidDataAccessResourceUsageException 137
Inversion of Control. See IoC
invoke() 115, 117
IoC 4

Constructor Injection 37
in enterprise applications 23
Setter Injection 37
to create associations 44
to manage components 44
types of 37

isMatch() 107
isolated 176
isolation levels 186

consequences of 187
dirty read 186
in Spring 187
non-repeatable read 187
phantom read 187
transaction property descriptor 192

isRuntime() 106, 113
iText 341

J

J2EE 5
J2EE Web-Services 234
JaasAuthenticationProvider 373

defined 372
See also ProviderManager

Jakarta Commons Attributes 196–197, 199
background 197
configuring Ant 199
configuring Maven 200
doclet tags 197
precompiler 199

Jakarta Commons DBCP 138
Jakarta Commons Validator 39
Jakarta POI 339
Jakarta Struts

Action 276
ActionForm 288
compared to Spring MVC 38, 283
wiring 277, 309
with Jakarta Tiles 334

internationalization. See I18N
intersection() 113

coupling with Spring 349
DispatchAction 303
history of 347
plugin 348

J

J

J
J
J
J

J
J

J
J
J
J
J
J
J
J
J
J

INDEX 435

akarta Struts (continued)
proxy action 351
Spring-aware Action 348

akarta Tiles 320, 332
as part of Struts 332
definition file 333
personalization 335
template example 332

ava 2 Enterprise Edition. See J2EE
ava Data Objects. See JDO
ava Message Service. See JMS
ava Naming and Directory Interface.

See JNDI
ava Transaction API. See JTA
avaBeans 44, 55, 122

collaborating with 16
creating with new 47
deserializing 47
in user interfaces 4
loosely coupled 7
specification 4
with Jakarta Commons Attributes 197

avaMail 245
avaMailSenderImpl 245
avaOne 357
avaServer Faces in Action 357
avaServer Faces. See JSF
AX-RPC 209, 211, 233
axRpcPortProxyFactoryBean 236–237
bdcTemplate 145
Boss, field joinpoints 97
DBC 134

advantages 141
as objects 152
batch updates 148
boilerplate code 11, 143–144
compared to entity beans 141
compared to Hibernate 141
compared to JDO 141
compared to ORM 156
creating robust code 144
database driver 149
error handling 144
exception handing 136
generating primary keys 155
handling exceptions 142
inserting data 142
performance tuning 141
problems with 142
resource leaks 144
resource management 144

Spring transaction support 177
transactions 178
type safety 148
types 148
updating data 142

JdbcDaoImpl
customizing 378
customizing queries 377
database tables 376
queries 376
wiring 376, 378
See also AuthenticationDao

JdbcDaoSupport 141
JdbcTemplate

batch updates 148
compared to database operation objects 154
convenience methods 147, 151
debugging 147
described 144
example of 145
execute() 147–148
inserting data 147
logging SQL 146
querying for simple types 151
stored procedures 152
using implicitly 153
using JBDC types 148
wiring 145
with callbacks 145

JDO 11, 40, 134
compared to EJB 164
compared to Entity Beans 36
compared to JDBC 141
exception hierarchy 136
specification 164
Spring transaction support 177
supported in OJB 169
transactions 178, 180

JdoCallback
as inner class 166
defined 165
example of 165

JdoTemplate
convenience methods 166
wiring 165
with JdoCallback 165

JdoTransactionManager
defined 178
wiring 180

JMS 256
callback 258
retrieving data 143
shortcomings 156
Spring abstraction layer 241
Spring module 10–11

setting timeout 262
Spring support 241

JMSConnectionFactory 260
JMSException 257

436 INDEX

JmsTemplate 258, 261
compared to JmsTemplate102 261
convertAndSend() 265
pubSubDomain 261
receive() 261
receiveAndConvert() 265
receiveTimeout 262
send() 259
using 258
wiring 259

JNDI 137, 227
DataSource lookup 241
in reverse 8
JMSConnectionFactory 260
lookup in EJB 7
retrieving DataSource 241
Spring support 241
support for 10
with JTA 241

JndiObjectFactoryBean 243
for JMSConnectionFactory 260
wiring a DataSource 138
wiring a MailSession 245

Job 251
JobDetail 255
Johnson, Rod 8
joinpoint 115

advice 93
defined 93
joinpoint models 95
on field modification 95
on method invocation 95

JSF
compared to AWT 357
compared to Swing 357
configuration file 358
dependency injection 359
event handling 361
example page 357
history of 357
managed bean 358–359
<managed-property> 360
setter injection 359
specification 357
Spring integration 357
tags 358
<variable-resolver> 359–360
wiring beans 360

JSP
${} 322
binding forms 315

tags 314
with InternalResourceViewResolver 308

JSR-109 236
JSR-175 196
JSTL, with Tiles 335
JstlView

wiring 310
with InternalResourceViewResolver 310

JTA 178
Spring transaction manager 178
with EJB 177

JtaTransactionManager
defined 178
transactionManagerName 181
wiring 181

jwcid, example of 352

K

Knight of the Round Table
executing 22
HolyGrailQuest 17
KnightOfTheRoundTable 16, 27
KnightOfTheRoundTableTest 17
MinstelAdvice 28
Minstrel 27
Quest 21
Spring configuration file 22
weaving advice 29

KwikEMart example 98
ThankYouAdvice 102
WelcomeAdvice 99

KwikEMartExceptionAdvice 104

L

laziness 244
lazy loading 156
lazy-init, with EJB proxies 229
LDAP, for authenticating 382
LdapPasswordAuthenticationDao, configuring 383
Leave it to Beaver 368
lightweight containers

alternatives to Spring 36
defined 8

lightweight directory access protocol. See LDAP
<list> 62
load-time weaving 95
LocaleEditor 80
LocalPersistenceManagerFactoryBean 164

wiring 164

error messages 316
for HTML 320
for XML 320
limitations 320

LocalSessionFactoryBean
DataSource 160
mappingDirectoryLocations 161
mappingResources 160

L

L
l
l
L

M

M
M

M
m
M
<
M

M

M

m

M
M

M

M
M

m
M

M
m

INDEX 437

ocalSessionFactoryBean (continued)
wiring 159
wiring JNDI DataSource 244

ocalStatelessSessionProxyFactoryBean 228–230
ogging, as an aspect 93
oose coupling, benefits of 7
otus Notes 245

aidService 108–110
ailSender
defined 244
implementations of 244
in use 246
wiring 245
ailSession 245
anaged-property 360
ann, Kito D. 357
map> 63
apMessage 258, 265
using 258
appingSqlQuery
example of 154, 378
using 154
with JDbcDaoImpl 377
atchAlwaysTransactionAttributeSource 190
configuring 190
defined 189
example of 189
when to use 190
atches()
ClassFilter 106
MethodMatcher 106, 113
atrix, The 87
aven, with Jakarta Commons

Attributes 200
cClanahan, Craig
and JSF 357
Struts 347
d5PasswordEncoder 379
essage 258, 262
casting to MapMessage 262
essage queue 256
essageConverter
example of 263
fromMessage() 264
toMessage() 264
wiring 264
See also SimpleMessageConverter
essageCreator 259

converting 263
sending 257

MessageSource 84
metadata 11, 128

autoproxying 128
with transactions 195

MethodBeforeAdvice 28, 99, 102
compared to MethodInterceptor 103
example of 99
wiring 100

MethodInterceptor 98, 102
compared to AfterReturningAdvice 103
compared to MethodBeforeAdvice 103
example of 103
IntroductionMethodInterceptor 115

MethodInvokingJobDetailFactoryBean 255
wiring 255

MethodInvokingTimerTaskFactoryBean 255
wiring 255

MethodMapTransactionAttributeSource 206
MethodMatcher 106, 113
Microsoft Office document in Java 339
MIME messages 245
Minority Report 127
mixin 115–116, 118
mocking 134
Model 2 web framework 38
ModelAndView

explained 286
in request lifecycle 272

Model-T Ford 320
Monson-Haefel, Richard 234
motivation 64
Mousetrap 270
movie credits 43
MultiActionController 301

example of 301
in Controller hierarchy 283
methodNameResolver 303
resolving URLs 302
when to use 285, 301

multiple inheritance 115
MVC framework

diagram of request 278
request lifecycle 271

MVC Spring module 10–11
MySQL, generating sequences 155

N

NamedCasProxyDecider, defined 387

essages
accessing with JSP tag 85
configuring with MessageSource 83
consuming 261

NamedMethodMatcherPointcut 109
NameMatchAttributeSource 191
NameMatchMethodPointcut 107

wiring 108

438 INDEX

NameMatchTransactionAttributeSource
compared to CMT 194
isolation level 192
properties 192
read-only 193
rollback rules 193
short cutting 194
using implicitly 195
wild cards 194
See also transaction property descriptor

NameMethodMatcherPointcut 124
compared to

RegexpMethodPointcutAdvisor 110–111
NanoContainer 37
NestedRuntimeException 136
new keyword 47
non-repeatable read 187
<null> 64
NullUserCache 381

O

O/R mapping, Spring module 10–11
object definition source

Ant-like pattern matching 399
configuring 398
property editor 399

Object Graph Navigation Language.
See OGNL

Object Request Broker. See ORB
Object/Relational Mapping.

See ORM
ObJectRelationalBridge. See OJB
objects, creating associations 43
ODMG, support in OJB 169
OGNL, with Tapestry 356
OJB 40, 157

configuring 169
ConnectionFactoryClass 170
features 169
JDO support 169
ODMG support 169
OJB-repository.xml 169
Spring transaction support 177
transactions 178, 180
web site 169
wiring in Spring 170

OnePerCustomerInterceptor 103
online shopping application 43
OpenSymphony 248

WebWork 362

Ordered 282
defined 283
with HandlerMappings 282

ORM
benefits 157
compared to JDBC 156
defined 157
features 156
Spring services 157

ORO 110

P

<page-specification> 356
</property-specification> 356

ParameterMethodNameResolver 303
compared to DispatchAction 303
paramName 303
wiring 303

parent, <bean> attribute 202
Pareto’s Principle 144
Parker, Peter 128
PasswordDaoAuthenticationProvider

compared to DaoAuthenticationProvider 374
defined 372
wiring 382
See also ProviderManager

PathMap 281
example of 282

Patterns of Enterprise Application
Architecture 176

PDF, generating with Spring 340
PerformanceMonitorListener 361
PersistenceBroker, with

PersistenceBrokerTransactionManager 181
PersistenceBrokerDaoSupport, example of 170
PersistenceBrokerTemplate

configuring 170
convenience methods 171

PersistenceBrokerTransactionManager 181
defined 178
wiring 180

PersistenceManagerFactory 164
compared to SessionFactory 164
configuring in Spring 164
defined 164
with JdoTransactionManager 180

phantom read 187
PhoneNumberEditor, example of

PropertyEditor 82
PicoContainer 37
OptimisticLockingFailureException 137
Oracle OC4J 274
Oracle, generating sequences 155
ORB 212

piña colada 208
plain old Java interface. See POJI
plain old Java object. See POJO
PlaintextPasswordEncoder 379

P

p

P
p
P
P

p
P

P
P
P
P

P

P

p
p
p
p

P
p
P

P

p

INDEX 439

latformTransactionManager
implementations of 178
with TransactionInterceptor 204
with TransactionTemplate 183

ointcut 105
defined 94
dynamic 106
intersection 113
operations 113
static 106–107
union 113

ointcutAdvisor 107
oint-to-point message 256
OJI 8
OJO 8, 44, 206, 216–217
declarative transactions 183, 191

ooling 57
ortable Document Format.

See PDF
OST 290
ostgreSQL, generating sequences 155
reparedStatement 147
reparedStatement with

PreparedStatementCreator 145
reparedStatementCreator
defined 145
example of 146
using implicitly 147
with PreparedStatementSetter 147

reparedStatementSetter
defined 147
example of 147
using implicitly 147
with PreparedStatementCreator 147

rimary key, generating 155
rimitives, configuring 59
roceed() 102–103, 115
rogrammatic transactions 177, 181
drawbacks 183

rogramming Perl, 3rd Edition 244
ropagation behavior 185
roperties
configuring with

PropertyPlaceholderConfigurer 78
wiring 63

ropertiesMethodNameResolver 303
advantages of 304
mappings 304
wiring 304

roperty 59
<bean> subelement 59, 61

<set> subelement 62
<value> subelement 59

PropertyEditor 80
PropertyEditorSupport

customizing 81
getAsText() 80
implementations of 80
setAsText() 80
subclassing 80

PropertyPlaceholderConfigurer 77, 90
example of 78

ProperyEditor, registering with
CustomEditorConfigurer 82

<props> 63–64
prototype bean

configuring 56
motivation for 56
performance implications 57

ProviderManager
behavior 372
explained 371
providers 372
wiring 372

proxy 96
creating with ProxyFactoryBean 101
defined 94
proxying classes 96

proxy tickets 387
ProxyFactoryBean 30, 122, 124, 126

example of 101
for transactions 183
properties 122
See also TransactionProxyFactoryBean

proxyInterfaces 122–123
publishing events 46, 86
publish-subscribe 257
Python 218

Q

Quartz scheduler 248
defined 250

QuartzJobBean 251
compared to TimerTask 251
wiring 251

QueryInterceptor 110

R

read-mostly 156
read-only
<list> subelement 62
<map> subelement 63
<props> subelement 63
<ref> subelement 60

explained 188
transaction property descriptor 193

red pill 87
<ref> 60

440 INDEX

ReflectionSaltSource
defined 380
wiring 380

RegexpMethodPointcut 109
RegexpMethodPointcutAdvisor

compared to
NameMethodMatcherPointcut 110–111

regular expressions 109–110
to validate 292

RejectProxyTickets
defined 387
wiring 388

Remote 215
remote procedure call. See RPC
remote proxy 210
RemoteAccessException 211
RemoteAuthenticationProvider

defined 372
See also ProviderManager

RemoteException 211, 213, 231
RequestHandledEvent 85, 361
RequestHandledFilter 362
Resin 218
ResolverSetupServletContextListener 365
ResourceBundle

naming properly 84
using with ResourceBundleMessageSource 84

ResourceBundleMessageSource 84
ResourceBundleResolver

defined 308
ResourceBundleViewResolver

advantages 311
basename 312
compared to BeanNameViewResolver 311
compared to XmlViewResolver 311
wiring 312
with AbstractExcelView 340

resources, loading with ApplicationContext 46
ResultReader 150
ResultSet

iterating 149
mapping with RowMapper 150
with RowCallbackHandler 149

rigid design 135
RMI 208–209, 212–215, 217

compared to Hessian 218
compiler 215
difficulties 217
drawbacks 212
exporting with Spring 216
lookup 213

rmic 215, 217
RmiProxyFactoryBean 213, 217, 219
RmiServiceExporter 217

compared to HessianServiceExporter 221
RoleVoter

customizing 391
wiring 391

rollback rules, transaction property descriptor 193
round tripping 156
RowCallbackHandler 150

defined 149
example of 149

RowMapper
defined 150
example of 150
reusing 151

RowMapperResultReader 150
example of 150

RPC 209, 211
RuleBasedTransactionAttribute 198
RunAsImplAuthenticationProvider

defined 372
See also ProviderManager

runtime pointcut, performance considerations 107
runtime weaving 95–96

S

salt 380
ScheduledTimerTask 249

compared to SimpleTriggerBean 252
delay property 250
wiring 249

SchedulerFactoryBean, wiring 254
scheduling, Spring support 241, 248
scriptlet code 320
security interceptor explained 369
SecurityEnforcementFilter, wiring 397
Seinfeld 368
Serializable, in remote calls 211
serialization with HTTP invoker 224
ServiceLocator 24
servlet filter

Acegi 393
FilterToBeanProxy 399
handling JSF events 362

Session, getting from SessionFactory 159
SessionFactory

compared to PersistenceManagerFactory 164
configuring 159
using 159
programmatic 212
registry 215, 217
skeleton 215
stub 215, 217

wiring 159
with HibernateDaoSupport 163
with HibernateTransactionManager 180

<set> 62

s
s

S
S
S
s
S
S

S
S

S

S

S
S

S
S
S
s
s

S
S

s
s

S
S

INDEX 441

etApplicationContext() 50
etter injection 58

compared to constructor injection 68
example of 52
in JSF 359
when to use 69

haPasswordEncoder 379
hip, Howard Lewis 353
imple Object Access Protocol. See SOAP
imple type, configuring 59
impleControllerHandlerAdapter 307
impleFormController
doSubmitAction() 290
example of 290
formView 291
in Controller hierarchy 283
onSubmit() 291
shortcomings 294
successView 291
when to use 285
wiring 291

impleMailMessage 246
impleMappingExceptionResolver
exceptionMappings 317
wiring 317

impleMessageConverter 265
wiring 265

impleRemoteStatelessSessionProxyFactoryBean
229

impleTriggerBean 252
impleUrlHandlerMapping 222
defined 279
wiring 281

impsons, The 98
ingle Sign-On. See SSO
ingleRemoteStatelessSessionProxyFactoryBean 231
ingleton 120
ingleton bean

configuring 56
preloading of 47

MTP 245
OAP 233
compared to Burlap 218

preadsheet, creating with Spring 338
pring

bind 326, 331
compared to #springBind 326, 331
example of 331
Velocity macros 326

bindEscaped, example of 331
pring Cleaning 108, 110

<destroy-method> 49
example 22
<property> 14
<value> 14

Spring Framework
application context module 10
compared to EJB 33
container 9–10, 44
creator of 8
described 8
modules 9
origin of 8
philosophy 6

Spring MVC, alternatives 347
Spring Training application

CourseService 50
CourseServiceImpl 52
enforcePrerequisites() 54
StudentService 50
StudentServiceImpl 51
UML diagram 50

<@spring.bind> 326, 331
spring.tld 314
SpringActionFactory 363

configuring 363
downloading 363

#springBind 326, 331
<spring-bind> 315–316, 326, 331

compared to <@spring.bind> 331
configuring 315
example of 315–316, 326
properties 315

SpringTapestryEngine 354
configuring 355
defined 353
limitations 354

SQL
advantages of 141
drawbacks 157
logging with JdbcTemplate 146
types 148

SQL Maps. See iBATIS SQL Maps
SQLException 135

handling 136
SqlMapClient, wiring 167
SqlMapClientCallback

defined 168
example of 168

SqlMapClientTemplate 166
compared to SqlMapTemplate 166
convenience methods 168
pring configuration file
<bean> 14
<beans> 14, 54
<constructor-arg> 14

wiring 168
SqlMapExecutor 168
SqlMapTemplate, compared to

SqlMapClientTemplate 166

442 INDEX

SqlProvider
defined 146
example of 146

SqlUpdate
compile() 153
declareParameter() 153
example of 153
using 153

Squishee 99
SSO, described 385
static pointcut 106–107

performance considerations 107
StaticMethodMatcherPointcut 107
stored procedures

accessing with Spring 152
motivations for 151

String
querying for 151
wiring with StringArrayPropertyEditor 81

StringArrayPropertyEditor 81
StringTrimmerEditor 81
Struts Action

bean naming 351
delegating 350
example of 347, 350
Spring-aware 348
See also ActionSupport;

DelegatingActionProxy
Struts in Action 39, 332
sub-beaning 202
Sun Microsystems 4
Sun, JDO 164
sunbathing 208
surrogate key 155
Swing, compared to JSF 357
synchronous operation 256
SystemWideSaltSource

defined 380
wiring 380

T

Tapestry 39
BaseEngine 353
behavior 353
creator 353
engine 353
features 352
global 353–354
jwcid 352
<page-specification> 356

_target 297
target 122

defined 94
teeter-totter 174, 270
template method 139
TestingAuthenticationProvider

defined 372
See also ProviderManager

TextMessage 265
ThankYouAdvice 102
ThrowawayController 305

compared to WebWork 305
described 305
example of 305
execute() 306
in Controller hierarchy 283
singleton 306
when to use 285
wiring 306

ThrowawayControllerHandlerAdapter
wiring 306
See also ThrowawayController

ThrowsAdvice 98, 104
Tiles. See Jakarta Tiles
<tiles:getAsString> 332
<tiles:insert> 332
TilesConfigurer

definitions 334
wiring 334

TilesView 335
Timer 248

limitation of 250
TimerFactoryBean

defined 249
wiring 249

TimerTask 248
compared to QuartzJobBean 251
run() 249
using 248
wiring 249
wiring to ScheduldTimerTask 249

topic, message 257
Transaction

commit() 180
rollback() 180

transaction attributes 185
with TransactionProxyFactoryBean 189

transaction property descriptor
diagramed 192
isolation level 192
read-only 193
replacing BaseEngine 353
Spring integration 352
template 356

Tapestry in Action 353

rollback rules 193
TransactionAttribute

wiring 189
See also MatchAlwaysTransactionAttributeSource

T

T
T

T
T
T

T

t

T
T

T
t
t
T

INDEX 443

ransactionAttributeSource 184
defined 189

ransactionAttributeSourceAdvisor 204
ransactionCallback, as inner

class 182
ransactionDefinition 185
ransactionInterceptor, wiring 204
ransactionManager, with

JtaTransactionManager 181
ransactionProxyFactoryBean 33
autoproxying 203
bean inheritence 202
bean naming 184
defined 183
metadata 196
setting transaction policy 189
transactionAttributes 194
transactionAttributeSource 184
transactionManager 184
wiring 183

ransactions
ACID 176
atomic 176
consistent 176
declarative 177
defined 174
diagramed 175
durable 176
handling manually 30
importance of 175
in DAO templates 140
isolated 176
isolation levels 186
managing 174
money transfer example 174
movie ticket example 174
programmatic 177
propagation behavior 185
timeout 188

ransactionStatus 182
ransactionTemplate
defined 182
example of 182
setRollbackOnly() 182
transactionManager 183
wih TransactionStatus 182
wiring 182

rigger 252
unneling 218
ype, <constructor-arg> attribute 67
ypeMismatchDataAccessException 137

U

UnanimousBased
defined 389–390
wiring 390

UncategorizedDataAccessException 137
unchecked exceptions, benefits of 135
UnicastRemoteObject 214
union 113
unit testing 134

DAOs 138
example of 17
importance of 17
J2EE applications 5, 7
mocking 19, 21
testing cycle 6
within a container 7

UnsatisfiedDependencyException 67
UserTransaction

commit() 181
rollback() 181
with JtaTransactionManager 181

V

validating with regular expressions 292
Validator

defined 292
example of 292
supports() 292

Value Object pattern 36
<value> 59

<property> subelement 59
variable-resolver 360
Velocity 10, 307, 320

advantages 321
compared to FreeMarker 327
compared to JSP 320
configuring properties 323
DateTool 325
escaping HTML 327
example template 321
exposing model 324–325
features 321
formatting 324
integrating with Spring 321
NumberTool 325
popularity 321
resolving views 323
Spring macros 326
web site 322

with InternalResourceViewResolver 308
See also VTL

Velocity Template Language.
See VTL

444 INDEX

VelocityConfigurer
compared to FreeMarkerConfigurer 329
described 323
resourceLoaderPath 323
velocityProperties 323
wiring 322

VelocityViewResolver
dateToolAttribute 324
exposeRequestAttributes 325
exposeSessionAttributes 325
exposeSpringMacroHelpers 327
exposing model 325
formatting 324
in use 324
numberToolAttribute 324
wiring 323

version control 17
View

as part of ModelAndView 286
in request lifecycle 272

ViewResolver
implementations of 307
in request lifecycle 272

VTL 322
#foreach 322
compared to JSP 322

W

weaving 94
web forms

handling 289
multiple pages 294

web frameworks 38
web services 208–209, 218
web.xml

configuring DispatcherServlet 272
configuring JSF with Spring 360
configuring Tapestry 354
mapping URLs 272
with WebWork 2 365

WebApplicationContext, with Struts 349
WebApplicationContextUtils, with Tapestry 354
WebWork 39

compared to Spring MVC 283
compared to ThrowawayController 305
Spring integration 362
See also WebWork 1; WebWork 2

WebWork 1
compared to WebWork 2 364
CVS 363

WebWork 2
compared to WebWork 1 364
xwork.xml 364
See also XWork

WebWork Action
defined 363
example of 363

WelcomeAdvice 99
wiring 101

whack-a-mole bugs 19
wildcard, NameMatchMethodPointcut 108
wireless devices 223
wiring 22, 43, 50

bean inner beans 61
bean references 60
collections 61
defined 50
List 62
Map 63
possible sources 54
primitives 59
Properties 63
Set 62
simple types 59

WSDL 218, 235

X

XA. See distributed transactions
XDoclet 5
XML configuration file, <bean> 54
XmlBeanFactory 45

creating 45
defined 54
example 22

XmlFileViewResolver
compared to BeanNameViewResolver 311
location 311
views.xml 311
wiring 311

XML-RPC, compared to Burlap 218
XmlViewResolver

compared to ResourceBundleViewResolver 311
defined 308

XmlWebApplicationContext 46
defined 54

XWork 364
XWork Action 364

Y

SpringActionFactory 363 Yale Central Authentication Service. See CAS

M A N N I N G $44.95 US/$60.95 Canada

JAVA

SPRING IN ACTION
Craig Walls • Ryan Breidenbach

“… a great way of explaining
Spring topics… I enjoyed
the entire book.”

—Christian Parker
President Adigio Inc.

“… no other book can
compare with the practical
approach of this one.”

—Olivier Jolly
J2EE Architect, Interface SI

“I thoroughly enjoyed the
way Spring is presented.”

—Norman Richards
co-author of XDoclet in Action

“I highly recommend it!”

—Jack Herrington, author of
Code Generation in Action

,!7IB9D2-djedfb!:p;o;O;t;P
ISBN 1-932394-35-4

Spring is a fresh breeze blowing over the Java landscape. Based
on a design principle called Inversion of Control, Spring is a
powerful but lightweight J2EE framework that does not

require the use of EJBs. Spring greatly reduces the complexity of
using interfaces, and speeds and simplifies your application
development. You get the power and robust features of EJB and
get to keep the simplicity of the non-enterprise JavaBean.

Spring in Action introduces you to the ideas behind Spring and
then quickly launches into a hands-on exploration of the frame-
work. Combining short code snippets and an ongoing example
developed throughout the book, it shows you how to build
simple and efficient J2EE applications. You will see how to solve
persistence problems using the leading open-source tools, and also
how to integrate your application with the most popular web
frameworks. You will learn how to use Spring to manage the bulk
of your infrastructure code so you can focus on what really
matters–your critical business needs.

What’s Inside
n Persistence using Hibernate, JDO, iBatis, OJB, and JDBC
n Declarative transactions and transaction management
n Integration with web frameworks:

Struts, WebWork, Tapestry, Velocity
n Accessing J2EE services such as JMS and EJB
n Addressing cross-cutting concerns with AOP
n Enterprise applications best practices

Craig Walls is a software developer with over 10 years’ experience
and co-author of XDoclet in Action. He has sucessfully imple-
mented a number of Spring applications. Craig lives in Denton,
Texas. An avid supporter of open source Java technologies, Ryan
Breidenbach has developed Java web applications for the past five
years. He lives in Coppell, Texas.

www.manning.com/walls2

Ask the Authors Ebook edition

AUTHOR
4

ONLINE

4

www.manning.com/walls2

	Spring in Action
	Copyright
	Brief Contents
	Contents
	Preface
	Acknowledgments
	About this Book
	Roadmap
	Who should read this book
	Code conventions and downloads
	Author Online
	About the authors
	About the title
	About the cover illustration

	Part 1 - Spring essentials
	Ch1 Spring Jump Start
	1.1 Why Spring?
	1.1.1 A day in the life of a J2EE developer
	1.1.2 Spring’s pledge

	1.2 What is Spring?
	1.2.1 Spring modules

	1.3 Spring jump start
	1.4 Understanding inversion of control
	1.4.1 Injecting dependencies
	1.4.2 IoC in action
	1.4.3 IoC in enterprise applications

	1.5 Applying aspect-oriented programming
	1.5.1 Introducing AOP
	1.5.2 AOP in action
	1.5.3 AOP in the enterprise

	1.6 Spring alternatives
	1.6.1 Comparing Spring to EJB
	1.6.2 Considering other lightweight containers
	1.6.3 Web frameworks
	1.6.4 Persistence frameworks

	1.7 Summary

	Ch2 Wiring Beans
	2.1 Containing your beans
	2.1.1 Introducing the BeanFactory
	2.1.2 Working with an application context
	2.1.3 A bean’s life

	2.2 Basic wiring
	2.2.1 Wiring with XML
	2.2.2 Adding a bean
	2.2.3 Injecting dependencies via setter methods
	2.2.4 Injecting dependencies via constructor

	2.3 Autowiring
	2.3.1 Handling ambiguities of autowiring
	2.3.2 Mixing auto and explicit wiring
	2.3.3 Autowiring by default
	2.3.4 To autowire or not to autowire

	2.4 Working with Spring’s special beans
	2.4.1 Postprocessing beans
	2.4.2 Postprocessing the bean factory
	2.4.3 Externalizing the configuration
	2.4.4 Customizing property editors
	2.4.5 Resolving text messages
	2.4.6 Listening for events
	2.4.7 Publishing events
	2.4.8 Making beans aware

	2.5 Summary

	Ch3 Creating Aspects
	3.1 Introducing AOP
	3.1.1 Defining AOP terminology
	3.1.2 Spring’s AOP implementation

	3.2 Creating advice
	3.2.1 Before advice
	3.2.2 After advice
	3.2.3 Around advice
	3.2.4 Throws advice
	3.2.5 Introduction advice

	3.3 Defining pointcuts
	3.3.1 Defining a pointcut in Spring
	3.3.2 Understanding advisors
	3.3.3 Using Spring’s static pointcuts
	3.3.4 Using dynamic pointcuts
	3.3.5 Pointcut operations

	3.4 Creating introductions
	3.4.1 Implementing IntroductionInterceptor
	3.4.2 Creating an IntroductionAdvisor
	3.4.3 Using introduction advice carefully

	3.5 Using ProxyFactoryBean
	3.6 Autoproxying
	3.6.1 BeanNameAutoProxyCreator
	3.6.2 DefaultAdvisorAutoProxyCreator
	3.6.3 Metadata autoproxying

	3.7 Summary

	Part 2 - Spring in the business layer
	Ch4 Hitting Database
	4.1 Learning Spring’s DAO philosophy
	4.1.1 Understanding Spring’s DataAccessException
	4.1.2 Working with DataSources
	4.1.3 Consistent DAO support

	4.2 Using JDBC with Spring
	4.2.1 The problem with JDBC code
	4.2.2 Using JdbcTemplate
	4.2.3 Creating operations as objects
	4.2.4 Auto-incrementing keys

	4.3 Introducing Spring’s ORM framework support
	4.4 Integrating Hibernate with Spring
	4.4.1 Hibernate overview
	4.4.2 Managing Hibernate resources
	4.4.3 Accessing Hibernate through HibernateTemplate
	4.4.4 Subclassing HibernateDaoSupport

	4.5 Spring and JDO
	4.5.1 Configuring JDO
	4.5.2 Accessing data with JdoTemplate

	4.6 Spring and iBATIS
	4.6.1 Setting up SQL Maps
	4.6.2 Using SqlMapClientTemplate

	4.7 Spring and OJB
	4.7.1 Setting up OJB’s PersistenceBroker

	4.8 Summary

	Ch5 Managing Transactions
	5.1 Understanding transactions
	5.1.1 Explaining transactions in only four words
	5.1.2 Understanding Spring’s transaction management support
	5.1.3 Introducing Spring’s transaction manager

	5.2 Programming transactions in Spring
	5.3 Declaring transactions
	5.3.1 Understanding transaction attributes
	5.3.2 Declaring a simple transaction policy

	5.4 Declaring transactions by method name
	5.4.1 Using NameMatchTransactionAttributeSource
	5.4.2 Shortcutting name-matched transactions

	5.5 Declaring transactions with metadata
	5.5.1 Sourcing transaction attributes from metadata
	5.5.2 Declaring transactions with Commons Attributes

	5.6 Trimming down transaction declarations
	5.6.1 Inheriting from a parent TransactionProxyFactoryBean
	5.6.2 Autoproxying transactions

	5.7 Summary

	Ch6 Remoting
	6.1 Spring remoting overview
	6.2 Working with RMI
	6.2.1 Wiring RMI services
	6.2.2 Exporting RMI services

	6.3 Remoting with Hessian and Burlap
	6.3.1 Accessing Hessian/Burlap services
	6.3.2 Exposing bean functionality with Hessian/Burlap

	6.4 Using Http invoker
	6.4.1 Accessing services via HTTP
	6.4.2 Exposing beans as HTTP Services

	6.5 Working with EJBs
	6.5.1 Accessing EJBs
	6.5.2 Developing Spring-enabled EJBs

	6.6 Using JAX-RPC web services
	6.6.1 Referencing a web service with JAX-RPC
	6.6.2 Wiring a web service in Spring

	6.7 Summary

	Ch7 Accessing Enterprise Services
	7.1 Retrieving objects from JNDI
	7.1.1 Working with conventional JNDI
	7.1.2 Proxying JNDI objects

	7.2 Sending e-mail
	7.3 Scheduling tasks
	7.3.1 Scheduling with Java’s Timer
	7.3.2 Using the Quartz scheduler
	7.3.3 Invoking methods on a schedule

	7.4 Sending messages with JMS
	7.4.1 Sending messages with JMS templates
	7.4.2 Consuming messages
	7.4.3 Converting messages

	7.5 Summary

	Part 3 - Spring in web layer
	Ch8 Building Web Layer
	8.1 Getting started with Spring MVC
	8.1.1 A day in the life of a request
	8.1.2 Configuring DispatcherServlet
	8.1.3 Spring MVC in a nutshell

	8.2 Mapping requests to controllers
	8.2.1 Mapping URLs to bean names
	8.2.2 Using SimpleUrlHandlerMapping
	8.2.3 Using metadata to map controllers
	8.2.4 Working with multiple handler mappings

	8.3 Handling requests with controllers
	8.3.1 Writing a simple controller
	8.3.2 Processing commands
	8.3.3 Processing form submissions
	8.3.4 Processing complex forms with wizards
	8.3.5 Handling multiple actions in one controller
	8.3.6 Working with Throwaway controllers

	8.4 Resolving views
	8.4.1 Using template views
	8.4.2 Resolving view beans
	8.4.3 Choosing a view resolver

	8.5 Using Spring’s bind tag
	8.6 Handling exceptions
	8.7 Summary

	Ch9 View Layer Alternatives
	9.1 Using Velocity templates
	9.1.1 Defining the Velocity view
	9.1.2 Configuring the Velocity engine
	9.1.3 Resolving Velocity views
	9.1.4 Formatting dates and numbers
	9.1.5 Exposing request and session attributes
	9.1.6 Binding form fields in Velocity

	9.2 Working with FreeMarker
	9.2.1 Constructing a FreeMarker view
	9.2.2 Configuring the FreeMarker engine
	9.2.3 Resolving FreeMarker views
	9.2.4 Binding form fields in FreeMarker

	9.3 Designing page layout with Tiles
	9.3.1 Tile views
	9.3.2 Tile controllers

	9.4 Generating non-HTML output
	9.4.1 Producing Excel spreadsheets
	9.4.2 Generating PDF documents
	9.4.3 Generating other non-HTML files

	9.5 Summary

	Ch10 Working with Other Web Frameworks
	10.1 Working with Jakarta Struts
	10.1.1 Registering the Spring plug-in
	10.1.2 Implementing Spring-aware Struts actions
	10.1.3 Delegating actions

	10.2 Working with Tapestry
	10.2.1 Replacing the Tapestry Engine
	10.2.2 Loading Spring beans into Tapestry pages

	10.3 Integrating with JavaServer Faces
	10.3.1 Resolving variables
	10.3.2 Publishing request handled events

	10.4 Integrating with WebWork
	10.4.1 WebWork 1
	10.4.2 XWork/WebWork2

	10.5 Summary

	Ch11 Securing Spring Applications
	11.1 Introducing the Acegi Security System
	11.1.1 Security interceptors
	11.1.2 Authentication managers
	11.1.3 Access decisions managers
	11.1.4 Run-as managers

	11.2 Managing authentication
	11.2.1 Configuring a provider manager
	11.2.2 Authenticating against a database
	11.2.3 Authenticating against an LDAP repository
	11.2.4 Enabling Single Sign-On with Acegi and Yale CAS

	11.3 Controlling access
	11.3.1 Voting access decisions
	11.3.2 Deciding how to vote
	11.3.3 Handling voter abstinence

	11.4 Securing web applications
	11.4.1 Proxying Acegi’s filters
	11.4.2 Enforcing web security
	11.4.3 Processing a login
	11.4.4 Setting up the security context
	11.4.5 Ensuring a secure channel
	11.4.6 Using the Acegi tag library

	11.5 Securing method invocations
	11.5.1 Creating a security aspect
	11.5.2 Securing methods using metadata

	11.6 Summary

	Appendix A - Spring setup
	A.1 Downloading Spring
	A.2 Choosing a distribution
	A.3 Setting up your project
	A.4 Building with Ant

	Appendix B - Spring-related projects
	B.1 AppFuse
	B.2 Rich Client Project
	B.3 Spring.NET

	Index
	Backcover

